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1. Transducers and Sensors 
 
By the end of this section you should be able to: 
 
• Discuss the definitions/specifications by which sensors are characterised. 
• Describe common methods for converting a physical parameter into an electrical quantity 

and give examples of transducers, including those for measurement of temperature, strain, 
motion, position and light. 

• Explain how to make sensitive measurements using a Wheatstone bridge, including 
balancing and offset compensation. 

• Describe systems for measuring motion, temperature, strain and light intensity. 
 

1.1. Definitions 

In this course we will be studying Electrical Measurements, and we will necessarily interplay 
between techniques and hardware used to sense the quantity we wish to measure, techniques and 
hardware used to process the signal generated by the sensors and also algorithms to interpret the 
final result. We will be, therefore be dealing with transducers, sensors and actuators. 
 
Transducers: Devices used to transform one kind of energy to another. When a transducer 
converts a measurable quantity (sound pressure level, optical intensity, magnetic field, etc) to an 
electrical voltage or an electrical current we call it a sensor.  We will see a few examples of 
sensors shortly. 
 
When the transducer converts an electrical signal into another form of energy, such as sound 
(which, incidentally, is a pressure field), light, mechanical movement, it is called an actuator.  
Actuators are important in instrumentation. They allow the use of feedback at the source of the 
measurement. However we will pay little attention to them in this course. The study of using 
actuators and feedback belongs to a course in Control theory. 
 
A sensor can be considered in its bare form, or bundled with some electronics (amplifiers, 
decoders, filters, and even computers). We will use the word instrument to refer to a sensor 
together with some of its associated electronics. The distinction between a sensor and an 
instrument is extremely vague, as it is increasingly common to manufacture integrated sensors. 
 
What follows is equally applicable to sensors and/or instruments. The discussion is also 
applicable to circuits, such as amplifiers, filters, mixers and receivers. Signal processing circuits 
are, in a sense, instruments.  It is not very important that both input and output signals are, for 
example, voltages. 
 
 
1.2. The linear model of a Sensor  

There is a fair amount of jargon associated with sensors, used to describe the usefulness or 
quality of a piece of hardware. Sensor specification terms are often used in an erroneous or 
misleading way, especially in the advertising literature of equipment manufacturers; they tend to 
manipulate definitions in order to make their product appear better than it is. It is always a good 
idea to investigate the precise meaning of specifications, before accepting them.  Below we 
attempt the definition of some important specifications from the engineering point of view. 
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The following discussion refers to an implicit linear model for the sensor. A sensor is assumed to 
be linear so that its response y to a stimulus x is idealised to have the form: 
 

( ) max, 0 x x  , A>0y x Ax= ≤ ≤     (1.1) 
 

Please note that we have defined the stimulus to be positive. This makes it easier to define 
quantities such as the threshold, and consequently makes it easier to understand that there may 
exist gaps in the response of an instrument!  
 
 
1.2.1. Sensitivity 

 
The constant A in (1.1) is called the sensitivity or the transducer gain or, simply, the gain of 
the sensor. To simplify the discussion we also take the gain to be positive. 
 
The linear model satisfies the definition of linearity, as it should: 
 

( ) ( ) ( ) ( )y x z A x z y x y z+ = + = +     (1.2) 
 

Please note that the response of a sensor defined this way exhibits no time dependence. Such an 
idealised sensor has no memory and its output instantly tracks the input. 
 
In the more general case we may know the steady state transfer function of the sensor. We can 
define the sensitivity as the derivative of the output with respect to the input: 
 

yS
x
∂

=
∂

.     (1.3) 

 
This is a partial derivative. As we shall see below, the sensor will exhibit sensitivities to other 
ambient (e.g. temperature) or operating parameters (e.g. a supply voltage). It is essential to study 
the sensor with all other (usually unintended) stimuli held constant. 
 
Sensitivity is, in a few words, the ratio of electrical output to signal input (input transducer), or 
physical output to electrical input (output transducer).  e.g., a temperature sensor may be quoted 
as 50 µV/K. and a loudspeahker as 90dBspl/W.  However, the term sensitivity may also be used 
in its usual electronic sense, i.e. the %change of some property of a device (eg gain) as a result 
of a % change in some parameter, (eg the ambient temperature).  For clarity, we will refer to this 
as the cross-sensitivity of x on y.  The sensitivity is also called the Gain of the sensor or 
instrument. 
 
The term sensitivity is occasionally misused to refer to the minimum detectable signal, i.e. the 
sensor’s detectivity or  threshold, which , incidentally, equals the noise floor of the sensor. 
 
1.2.2. Threshold and detectivity 

No sensor will respond to arbitrarily small signals. Signals in the range between zero and the 
sensor threshold minx will not cause the output of the sensor to change. The existence of a 
threshold is related to nonlinearity and noise. A stimulus which is too small for the output to 
exceed the noise floor is considered to be smaller than the threshold. Nonlinearity can play a role 
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as well. Consider an enhancement mode MOSFET as a voltage sensor (MOSFETs are used as 
very high impedance voltage or charge probes in high end “active” oscilloscope probes). Clearly 
such an instrument cannot respond to voltages smaller than the MOSFET threshold voltage.  
 
A sensor will also fail to respond to stimuli which are arbitrarily large. A sensor will necessarily 
have a range or a full scale maxx . The full range of a sensor can be limited by compression or 
by clipping. (Note that clipping is an extreme example of compression!) Since both compression 
and clipping are manifestations of nonlinearity we conclude that all sensors are non-linear. 
 
1.2.3. Zero offset 

A real sensor will deviate from the idealised linear model. The smallest improvement we can 
make to the description of an assumed linear sensor is the addition of a constant zero offset as 
follows: 

( ) 0y x b Ax= +      (1.4) 
 
This is not a linear form, despite the fact that it is described by a first order polynomial. This is 
called an affine relation. The constant 0b is called the zero offset of the sensor. The zero offset 
can be defined in two ways: The sensor reading when the input is zero, or the value of the 
stimulus required to make the output zero. The zero offset is simple to correct. By subtracting 

0b from y we recover a linear description of the sensor: 
 

( ) ( ) 0y x y x b Ax′ = − =     (1.5) 
 
1.3. Non-linearity  

While still retaining the time independence assumption we can introduce non-linearity in the 
model of the sensor: 

( ) ( )2 3
2 3y x Ax b x b x Ax g x′ = + + + = +    (1.6) 

 
The function ( )g x describes how much the sensor response deviates from its linearised 
description. There are several ways to describe linearity or nonlinearity , each one of  them 
described by a different term. The terms linearity and nonlinearity are conjugate, are used 
interchangeably, and often a value of linearity is quoted as non-linearity, and vice-versa. 
 
Nonlinearity is usually measured in relative units, either as a percentage of the maximum full 
scale reading of the sensor or the instrument, or locally as a percentage of a reading. Ideally we 
wish the nonlinearity to vanish, so it must be proportional to ( )g x  
 
We can define the absolute non-linearity locally, at x, as: 
 

( ) ( )
y

g x
x

Ax
δ = , [ ]min max,x x x∈     (1.7) 

It is more common to compare the maximum of  ( )g x  to the range of the sensor: 
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( )
( )

( )
( )

0

max min max min

max max
y

g x y x b Ax
A x x A x x

δ
− −

= =
− −

, [ ]min max,x x x∈    (1.8) 

 
Although this is the correct description of nonlinearity, sometimes the definition is given as: 

( )
( )max

max
y

g x
y x

δ =      (1.9) 

This form may be used in the presence of large zero offset in order to make the nonlinearity 
appear smaller than it is!  
 
Nonlinearity results not only in a discrepancy between what the instrument reads and what the 
linear model describes. It also leads to a gain error, usually referred to as the differential 
nonlinearity.  
 
The differential nonlinearity may be defined as the discrepancy, due to the non-linear character 
of the sensor’s transfer function, of the sensor gain from its modelled gain. The differential non-
linearity at a value x of the stimulus is simply: 
 

( ) ( )
A

g x
x

A
δ

′
=      (1.10) 

We may, of course, be interested in the maximum value of Aδ over the sensor range: 
 

( )max
A

g x
A

δ
′

=      (1.11) 

 
1.4. Memory effects  

 
1.4.1. Linear sensors –Laplace transforms and  Convolution 

The models we have developed so far are not entirely adequate, especially when we are 
concerned with very fast measurements. In this case we must account for the possibility that the 
sensor can internally store energy. Its internal energy content can modify the sensor’s behaviour. 
As a result the output of a sensor depends on previous measurements the sensor made, or, 
equivalently, the sensor exhibits memory. The time dependence of the response of a linear 
sensor is well known. A sensor can still be linear if its response is described by a linear 
differential equation: 
 

0 0

n kN K

n kn k
n k

y xA B
t t= =

∂ ∂
=

∂ ∂∑ ∑     (1.12) 

 
We can take the Laplace transform of this description to conclude that: 

( ) ( ) ( )
0 0

,
K N

k n
k n

k n

y s X B s A s x H s X s
= =

⎛ ⎞= =⎜ ⎟
⎝ ⎠
∑ ∑    (1.13) 

so that, in Laplace transform space, the sensor response is still linear in the stimulus x. The 
response of a sensor with a transfer function ( )H s  at time t is the convolution integral between 

the history of the stimulus x and the inverse Laplace transform ( )h t of ( )H s : 
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( ) ( ) ( )
0

y t h x t dτ τ τ
∞

= −∫     (1.14) 

This model response is also valid for the linearised affine operator, i.e. after any offsets have 
been subtracted from the sensor response. 
 
Most real sensors behave like low pass filters, and they take some time to respond to their input. 
Consequently, there is a limit to the maximum stimulus frequency that can be detected. The 
maximum frequency a sensor can interpret is approximately the inverse of its response time.  
 
 
1.4.2. Non-linear sensors – Volterra integrals 

The Taylor series description cannot adequately describe the dynamics of a nonlinear sensor, 
and neither can the linear transfer function description. The general description of a non-linear 
response with memory effects requires the use of a Volterra integral expansion , which is a 
generalisation  of the convolution integral applicable to nonlinear functions with memory. The 
reason is that the response function of a non-linear sensor is modified by past input! Formally, 
the time response of a non-linear network can be written as a sum of integrals: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 1 2 1 2 1 2 1 2
0 0 0

1 1 1

,

n n n n

y t h h x t d h x t x t d d

h x t x t d d

τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ

∞ ∞ ∞

= + − + − − + +

+ − −

∫ ∫ ∫

∫ ∫
  (1.15) 

 
The functions ( ) ( ) ( )1 2 ,    nh t h t h t are called the Volterra Kernels. The first one, ( )1h t is 
evidently the linear impulse response of the sensor. The others are not that easy to describe nor 
to determine. Nonetheless, the Volterra series of a memory-less non-linear function must reduce 
to the Taylor expansion, and therefore in this case, the Volterra kernels are given by: 

( ) ( )1 2
1

1, , ,
!

n

n n n k
k

h t t t b t
n

δ
=

= ∏     (1.16) 

where ( )tδ  is the delta function defined by: 

( )

( )
0

0   0 , 

1

t x

t dt

δ

δ
∞

= ∀ ≠

=∫
     (1.17) 

We are usually concerned with weakly nonlinear systems whose high order Volterra kernels 
vanish very quickly with the kernel order, so that only the first and second order kernels  1 2,  h h  
are considered. Volterra series are used extensively in high frequency Computer Aided Circuit 
Design and electromagnetic simulation software.   
 
Example: 
 
Calculate the time dependent step response of the nonlinear sensor given below, to an input step 
occurring at t=0. The input signal is given by: 

( ) ( )0
0

0, 0
, 0
t

x t x u t
x t

≤⎧
= = ⎨ >⎩
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The sensor statically described by 2y a bx cx= + + ,  and its Volterra kernels are: 
 

( ) ( ) 1 1 2 2/ //
0 1 2 1 2

1 2

 ,  , ,b ch a h e h e eτ ξ τ ξτ ξτ τ τ
ξ ξ ξ

− −−= = =       

Solution: 

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )( )

1 1 2 2

1 1 2 2 1 2

1 2

/ // 2
0 0 1 2 1 2

1 20 0 0

/ / / // /
0 1 2 1 2

1 20 0 0

/ // 2
0 0

1 1 1

1 1 1

t t t
t tt

t tt

b cy t a e x u t d e e x u t u t d d

b ca bx e d ce e d d a e e e

a bx e cx e e

τ ξ τ ξτ ξ

τ ξ τ ξ ξ ξτ ξ ξ

ξ ξξ

τ τ τ τ τ τ
ξ ξ ξ

τ τ τ ξ ξ ξ
ξ ξ ξ

∞ ∞ ∞
− −−

− − − −− −

− −−

= + − + − − =

= + + = + − + − − =

= + − + − −

∫ ∫ ∫

∫ ∫ ∫  

Note that in this rather simple description of the nonlinearity the quadratic term of the transfer 
function exhibits 3 different time constants in its steady state response! 
 
Example: 
 
It is even more interesting to exercise this sensor with a sinusoid signal starting at t=0: 
( ) ( )( ) ( ) ( ) ( )0 1 0 1sin Im j tx t x x t u t x x e u tωω= + = +  

Repeating the procedure,  
 

( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )( )

1 21 1 2 2

1 21 1 2 2

/
0 1

0

/ /
0 1 1 0 1 2 1 2

1 20 0

/ //
0 1 0 1 0 1 1 2

0 0 0

0

Im

Im Im

Im Im Im

1

j t

j t j t

t t t
j t j t j t

by t a e x x e u t d

c e e x x e u t x x e u t d d

a b x x e e d ce e x x e x x e d d

a bx e

ω ττ ξ

ω τ ω ττ ξ τ ξ

ω τ ω τ ω ττ ξ τ ξτ ξ

τ τ
ξ

τ τ τ τ
ξ ξ

τ τ τ

∞
−−

∞ ∞
− −− −

− − −− −−

−

= + + − +

+ + − + − =

= + + + + + =

= + −

∫

∫ ∫

∫ ∫ ∫

( ) ( )( )

( )( )
( )( )

1 2

1 2

/
/ // 2

0 1 2 2

/ /
1 1 2 22

0 2 2 2 2
1 2

cos sin1 1
1

cos sin cos sin

1 1

t
t tt

t t

e t tcx e e bx

e t t e t t
cx

ξ
ξ ξξ

ξ ξ

ωξ ωξ ω ω
ω ξ

ωξ ωξ ω ω ωξ ωξ ω ω

ω ξ ω ξ

−
− −

− −

− +
+ − − + +

+

− + − +

+ +

 
 
Note that although this is one of the simplest possible forms of the second order kernel, it has 
introduced some major complications. We can see, for example, that the quadratic term 
introduces both a gain correction and a phase shift at the fundamental frequency, plus some 
frequency broadening (the decaying exponential prefactors) to the single tone signal! 
 
1.4.3. Hysteresis 

The existence of non-vanishing Volterra kernels gives rise to the phenomenon of hysteresis, i.e. 
the output evidently depends on previous values of the input. Even a linear sensor with memory 
will exhibit an apparently hysteretic behaviour if a stimulus of a high enough frequency 
(typically higher than the first characteristic frequency, pole or zero) is applied to it. True 
hysteresis, as encountered in magnetics, arises when the second order kernel has a very long 
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time constant in the second order kernel. Hysteresis is not necessarily a complication. It may be 
used to provide noise immunity in threshold sensing devices. An intentionally hysteretic voltage 
sensor is the Schmitt Trigger used extensively to combat noise in timer or counter instruments. 
 
 
1.5. Some more sensor characteristics 

1.5.1. Cross-Talk or Cross-sensitivity 

So far we have discussed how a sensor can be modelled to increasing degrees of accuracy. We 
have one final simplification to remove. We have assumed throughout that the coefficients in the 
model depend only on the stimulus we are measuring. This is usually not the case. We define as 
cross-sensitivity the gain of the sensor with respect to an unintended stimulus. For a sensor 
whose output y is intended to depend on a stimulus x, we can define its cross sensitivity on z as: 

,y z
x const

yS
z =

∂
=
∂

     (1.18) 

The existence of cross sensitivities is both a limitation and a blessing on accurate measurements. 
To make accurate and reproducible measurements the engineer needs to carefully monitor and 
record environmental parameters. A stable frequency reference, for instance, requires the use of 
an oven to temperature stabilize a crystal oscillator. On the other hand, a cross sensitivity can be 
exploited to amplitude modulate a measurement, in order to reduce the effect of noise on it. 
Many sensors/instruments exhibit high cross-sensitivity to electromagnetic fields and to 
vibration. For this reason precision measurements are performed in acoustically and 
electromagnetically shielded anechoic chambers. 
 
Example 
Consider, for example a thermistor used as a temperature sensor. We may say, for a thermistor, 
that its conductance is given by: 

/a TG ge−=  
Such a sensor can be assumed to be linear, describable by an affine relation for small 
temperature excursions around a reference temperature 0T : 
 

( ) ( ) ( ) ( ) ( ) ( )
2

2
0 0 0 0 0 02 4

0 0

d a aG T T G T G T T G T G T T G T T
dT T T

δ δ δ δ+ = + = + + +  

However, in order to measure the conductance of this thermistor we need to apply a voltage V 
and measure the current I. This means that the thermistor will heat up, to a temperature higher 
than that of the environment. If the thermistor has a thermal resistance to the ambient Tρ , its 
temperature, when the ambient temperature is AT  is going to be: 

( )2 2 /a T
A T A T A TT T VI T V G T T V geρ ρ ρ −= + = + = +  

 
This looks very complicated, and it clearly indicates that the sensor reading depends on the 
voltage applied. We can get some sense out of this by assuming we have been very careful 
indeed, and that the temperature rise with respect to the ambient is very small. In this case, the 
temperature differential due to heating is simply: 

( )2
heat T AT V G Tδ ρ=  

 
and we can conclude that the conductance reading is going to be approximately: 
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( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

2
2 2 2

0 0 0 0 02 4
0 0

2 2 2
0 0 0 02 2 2

0 0 0

1

T T

T T

a aG T T G T G T T V G T G T dT V
T T

a a aG T V G T G T V G T T
T T T

δ δ ρ ρ

ρ ρ δ

+ = + + − =

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠

 

 
In this calculation we have also included the linear in Tδ  contribution from the quadratic term 
of the Taylor expansion of the thermistor’s conductance. This sensor’s gain is now dependant on 
the voltage used to measure it. 
 
1.5.2. Resolution 

The smallest change of input detectable at the output is called the resolution.  In analogue 
systems the resolution is usually limited by noise. In digital systems resolution is 1 LSB (least 
significant bit).  A high resolution does not necessarily imply a high accuracy (a watch may 
resolve to the nearest second, while it may be a few minutes off). It is very important to realise 
that the resolution of an analogue device is equivalent to the resolution of a digital device, and 
that no analogue circuit offers infinite resolution. Indeed, the noise floor setting the resolution of 
an analogue system results directly into the maximum attainable digital resolution through the 
Shannon Channel capacity formula: 

2log 1SB f
N

⎛ ⎞= Δ +⎜ ⎟
⎝ ⎠

     (1.19) 

Where S is the total signal power and N the total noise power in an analogue channel of  
bandwidth fΔ , and B is the bit rate. This implies that the equivalent number of bits of a noisy 
sensor (with RMS noise voltage NV  is: 

max min
2log

N

y yN
V

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
    (1.20) 

The Shannon capacity formula should make it obvious that resolution can usually be increased at 
the expense of greater signal power, and consequently at a higher power dissipation. 
 
1.5.3. Dynamic Range 

The ratio between the maximum and minimum signals the transducer may handle. The 
maximum is usually limited by compression or distortion, while the minimum is defined by the 
threshold. The dynamic range is often measured in units of the RMS noise voltage, and 
expressed in a number of effective bits, or in decibels. So we will say that the dynamic range of 
a device is D decibels if: 

max
10

min

20 log yD
y

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
     (1.21) 

 
Sometimes we talk about the dynamic range by quoting the number of bits arising from the 
device dynamic range measured in units of the resolution, i.e. the RMS noise amplitude NV .  
 

max min
2log

N

y yN
V

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
    (1.22) 
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Like resolution, the dynamic range can be increased by increasing the signal power and 
consequently power dissipation. 
 
1.5.4. Non-monotonicity 

We have taken for granted that a sensor’s output is monotonic in its input. In other words we 
assume that the sensitivity never changes sign within the range of the instrument. This does not 
need to be the case.  High resolution (multi-bit) A/D and D/A converters are notorious for being 
non monotonic. 
 
1.5.5. Accuracy 

The difference between the apparent value of the stimulus and the actual value is called the 
accuracy. Accuracy is easy to intuitively understand but somewhat vague to define, and can be 
undermined by offset, gain error, non-linearity, non-monotonicity and hysteresis.  
 

 
Figure 1.1: Some definitions of sensor properties: Threshold, gain, dynamic range 
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Figure 1.2: Some the concept of linearity and linear approximation to a sensor’s response 
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Figure 1.3: the concept of hysteresis in a sensor’s response. 

 
 

1.6. Electrical modelling: Active and passive sensors 

Our approach to instrumentation is to treat sensors as circuit elements. We will call a sensor 
passive when it requires an external power source, i.e. behaves like a passive circuit element 
such as resistor, capacitor or inductor.  We will call a sensor active when it derives its power 
from the stimulus which it is measuring. In the circuit an active sensor appears like a signal 
source, with a Thevenin or Norton equivalent circuit.  
 
Please note that there is some confusion regarding the use of the terms active and passive in the 
instrumentation literature, where the opposite definition is often used, i.e. a sensor is called 
active when we need to supply power to a sensor in order to use it. We prefer to use a term 
consistent with the notions of activity and passivity in circuit engineering.  
 
1.7. Examples of sensors 

1.7.1. Active sensors  

These include: 
Photovoltaic transducers: e.g. solar cells, portable exposure meters 
 
Piezoelectric transducers generate electric polarisation, which is linearly related to the applied 
force (stress).  Examples include gas igniters, microphones, older record player cartridges, 
stress/strain gauges. Piezoelectric crystals are used to measure small displacements and also as 
actuators to implement small (as small as 1 Angstrom!) displacements in scanning tunnelling 
microscopes (STM) and Atomic force microscopes (AFM).  
 
Thermoelectric transducers: A thermocouple junction is formed when two dissimilar metals are 
joined at one end.  When the junction is heated, a small voltage appears between the two wires 
which is monotonically increasing with temperature (the Seebeck effect). By suitably biasing a 
thermocouple junction we can cool a specimen. (the Peltier effect). 
 
Electromagnetic transducers: Lentz’s law dictates that a changing magnetic flux through a loop 
conductor will induce a voltage across its terminals. Electromagnetic sensors include 
microphones, phonograph pick-ups, metal detectors, and dynamos. Actuators include earphones, 
loudspeakers and motors, both rotational and linear. Particularly fascinating are the linear motors 
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and associated magnetic levitation . Linear motors were apparently invented by Charles 
Wheatstone at Kings College in the 1840s and the first working full scale model was developed 
by Eric Laithwaite at Imperial College in the 1940s. (please read in the web about linear motors, 
especially the high acceleration types).  

 

1.7.2. Passive sensors 

These include:  
 
Variable resistance transducers: The change in resistance of an element can be readily 
measured.  Various components exist whose resistance changes in response to some external 
parameter, including potentiometers, strain gauges, resistive temperature detectors (RTDs), 
thermistors, photoconductive devices, and of course, potentiometers. The resistance of most 
metals and semiconductors depends on magnetic field, but usually in a very minor way. A recent 
development is that some alloys exhibit Giant Magnetoresistance (GMR). GMR sensors are used 
in the read heads of many modern hard disk drives.  
 
Other variable resistance devices include: 
 
Photoconductors - photoconductive material drops its resistance when light is shone on it.   
 
Strain gauges - A strain gauge is a piezoresistive element designed to change resistance when a 
force is applied.   A strain gauge is essentially a thin metallic conductor.  Stretching (tension) 
increases the length of the wire while reducing cross-sectional area, thus increasing resistance.  
Compression has the opposite effect.  Strain gauges are generally classified as either bonded or 
unbonded.  An unbonded gauge typically consists of a wire resistance element stretched between 
two supports. A bonded gauge consists of a thin pattern of conducting foil (e.g. copper-nickel 
alloy) intimately bonded to a backing material, which is in turn firmly affixed onto a solid 
object. 
 
Resistive temperature detectors (RTDs) - RTDs are generally constructed from platinum and 
their resistance increases with increasing temperature (positive temperature coefficient, PTC). 
The resistance is usually modelled as a polynomial in temperature, and the fitting coefficients 
are supplied with the sensor: 

 ( )2 3
1 2 31 ......... n

o nR R T T T Tα α α α= + + + +  (1.23) 

Thermistors (i.e. thermal resistors) are constructed from semiconductors or ceramics which 
exhibit a strong negative temperature coefficient (“tempco”) (NTC).  The temperature 
characteristic is generally very non-linear.   Physically, thermistors come in various shapes and 
sizes including beads, disks, wafers, rods etc.  These are generally encapsulated in glass or resin. 
Since the conductivity of a piece of semiconductor varies exponentially with temperature, 

 2

1 1 1 1exp expo
o o

R BR R B B
T T T T T T

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂
= − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (1.24) 

the sensitivity is, consequently: 

 2

1

o

R B
R T T R
∂

= −
∂

 (1.25) 

A related class of passive sensors are a bit more fundamental, appearing  
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pn-junction diodes:  The voltage across a biased pn junction is given by  
 

 ln( / 1)d T d SV V I I= +  (1.26) 

where TV  is the thermal voltage kT/q.  As long as the bias current greatly exceeds the reverse 
saturation current, which is typically a few fA,  
 
The reverse saturation current SI exhibits a strong positive temperature coefficient, and the net 
effect is that dV  decreases with increasing temperature (typically 2 /mV K−  , K is the degree 
Kelvin), making it difficult to use this measurement for precise temperature observation. If, 
however, the same diode voltage drop is measured at two different currents, then: 

 
 ( ) ( )1 2 1 2ln( / )d TV V I V I V I IΔ = − =  (1.27) 

This allows a truly linear measurement of absolute temperature. Alternatively, the two current 
values may be applied to two identical diodes held at the same temperature, and the voltage 
difference can be directly measured. 
 
Hall effect sensors: When a current flowing through a rectangular sheet conductor in the x 
direction is subjected to a magnetic field in the z direction, the electrons experience a force 
deflecting them sideways and thus producing a voltage across the conductor in the y direction.  
The Hall voltage measured is proportional to the field strength, and its polarity tells us if the 
carriers have positive or negative charge (i.e. if they are electrons or holes!). The Hall voltage 
appears to obey a relation similar to Ohm’s law: H HV IR= , with the Hall resistance HR  given 
by:  

H
BR
ne

=  

 
where n is the sheet carrier density and e the electron charge. At the same time, the ribbon, of 
sheet carrier density n  and electron mobility μ  has a resistivity of:  
 

1
ne

ρ
μ

=  

The resistance in the x direction is then: 

x
LR

W
ρ=  

and in the y direction a resistance  

y
WR
L

ρ=  

 
We can write a vector equation relating ,  ,  , x y x yI I V V , which accounts for finite currents 
flowing in both the x and y directions: 
 

/
/

x xH

y yH

V IL W R
V IR W L

ρ
ρ
−⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦
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Figure 1.4: A Hall effect sensor with its current bias and terminal voltage definitions 

 
Since the Hall resistance is inversely proportional to the carrier density, Hall probes are usually 
made as thin strips of low carrier density semiconductors, or even true 2-dimentional sheets of 
electrons residing at heterostructure interfaces. Examples are the MOSFET inversion layer and 
the (Quantum well) channel of HEMT (High Electron Mobility Transistors). The Hall Effect is 
also used to measure carrier densities in materials.  
 
At very high magnetic fields and very low carrier densities and temperatures, a Hall probe may 
exhibit the Quantum Hall Effect in which the Hall resistance is quantised to integral  
submultiples of a fundamental constant (m is an integer): 
 

 ( ) 2

25.8
H

hR m k
me m

= = Ω  (1.28) 

Even more fascinating is the fact that the longitudinal resistance vanishes at the values of the 
magnetic field where the Hall resistance is quantised. It is superficially surprising that the 
longitudinal conductance also vanishes at these field values. However this surprising result 
follows by simply inverting the resistance matrix. The Quantum Hall Effect measurement is 
reproducible between differently constructed samples. It is a reproducible SI standard for the 
resistance measurement. The Quantum Hall Effect is used as a primary standard in Standards 
offices for production of secondary calibration standards for resistance meters. 

 

Figure 1.5: The quantum Hall Effect. 
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Josephson Junctions and SQUID 
 
Two layers of superconductor separated by a thin layer of insulator form a tunnelling diode 
known as the Josephson junction. A Josephson junction conducts only at zero applied voltage, 
and then again when the applied voltage exceeds a material dependent characteristic value. If the 
junction is subjected to a magnetic field, its DC current depends on the applied field, as shown 
in the figure. When a junction is irradiated with an AC (microwave) field, its IV characteristic is 

modified, and steps appear, separated in voltage by hff
e

Δ = , (h is Plank’s constant) providing a 

fundamental voltage or frequency measurement. Conversely a junction supports an AC current 
when a DC voltage is imposed on it, so it can be used to generate microwave radiation. 
 
Josephson junctions can be used as voltage to frequency converters and frequency to voltage 
converters, sensitive mixers and amplifiers, and also very fast switches.  

 
Figure 1.6: The current through a Josephson junction as a function of applied magnetic 
field. Note its similarity to a single slit diffraction pattern (which is the same as the 
spectrum of a finite width pulse). Indeed, electron wave diffraction is responsible for this 
curve, and this is one of the fundamental experimental proofs of the wave nature of 
electrons. 

 

 
Figure 1.7:The IV characteristic of a Josephon junction without (solid) and with (dotted) 
an RF field imposed. The dashed line indicates the tunneling IV curve for the equivalent 
diode with normal (not superconducting) electrodes. 
 
A ring of superconducting material incorporating two Josephson Junctions is called the 
Superconducting Quantum Interference Device (SQUID). The SQUID is the most sensitive 
magnetic field detector in existence, and can also serve as radiofrequency detector. SQUIDs are 
used in many applications requiring measurement of minute magnetic fields and variations. 
Perhaps the most exciting application of SQUIDs is in Magneto Encephalography, where we 
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map the neural currents in the brain (and hence brain activity) by measuring the (minute) 
magnetic field they generate. 

 

Figure 1.8:  SQUID device, consisting of a superconducting ring with 2 Josephson 
junctions. 
 

 

Figure 1.9: Dependence of the current through a SQUID on the magnetic field threading 
the ring. A squid can detect flux density as small as 10 femptoTesla (!) 

 

Figure 1.10: Using a SQUID as an RF detector. 
 
Optoelectronic transducers: A pn diode will increase its reverse leakage current  when it is 
illuminated.  This is due to the creation of extra hole-electron pairs.  In phototransistors light is 
used to generate the base current. Due to charge storage effects, phototransistors are reputed to 
be relatively slow light detectors. Since LEDs and semiconductor lasers are pn diodes, they can 
also detect light (but at a slightly different wavelength than they emit). For fast light detection 
we can use pin, MSM, and avalanche diodes. PIN diodes are pn diodes with an undoped layer 
between the p and n regions. These are more sensitive than pn diodes since the intrinsic layer 
acts as a photon absorption volume. They are also faster because of the reduced capacitance due 
to the intrinsic layer thickness. Avalanche diodes are lightly doped pn junctions so that they can 
be biased into such an extreme reverse bias (100s of volts) that a photoelectron generated in the 
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device has enough energy to multiply by exciting numerous other electrons from the valence to 
the conduction band of the material. MSM  (metal semiconductor metal) diodes are among the 
fastest in existence, plus they can be monolithically integrated with high speed electronics. They 
normally exist in GaAs IC technologies. When the utmost in sensitivity is required there exists 
no match for the photomultiplier, which can detect single photons! 
 
Light (and sound!) detectors can of course be used for distance measurement in a rather trivial 
fashion by the time of flight technique where the time it takes light or sound to traverse a 
distance is measured. High resolution distance measurements are made by interferometry,  i.e. 
by measuring the interference pattern between two opposite travelling waves. Visible light 
intereferometry is routinely used in the machine shop to measure dimensions to a fraction of a 
micron. When by modulating the travel path of one of the interfering beams we can make 
extremely high-resolution measurements, eg. of time to a few femtoseconds. Note that 
interferometry is equivalent to heterodyne detection. Interferometry will be discussed in some 
detail later in the course. 
 
Variable reactance transducers: Can be divided into two main types: variable capacitance and 
variable inductance. 
 
Variable capacitance - A parallel plate capacitor has a capacitance C = �A/d.  Any one of these 
terms can be varied to change the effective capacitance.  A capacitive microphone uses acoustic 
pressure to vary plate spacing, d.  A capacitive level indicator (e.g. aircraft fuel detector) varies 
the effective permittivity � as the level of (non-conductive) liquid between the plates varies. 
The effective permittivity is the weighted average of the permittivities of the air and the liquid. 
A capacitive displacement transducer operates by varying the overlap area A by displacing the 
plates. 
 
Variable inductance -  Mainly used as displacement transducers. The inductor is wound on a 
core of high permeability material, and the inductance can then be varied by moving the core 
relative to the inductor or, by using a saturable core and changing the flux through an auxiliary 
coil. A variation on variable inductance concept is the variable mutual inductance sensor in 
which two coils are wound on the same magnetic core.  
 
Variable capacitance or inductance sensors can me utilised either in conjunction with a 
frequency meter, as the variable capacitance, e.g., can be resonated with a ficed inductor leading 
to a variable resonance frequency which can then be measured. Variable reactance can also be 
directly measured. 
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1.8. Extending sensor usefulness 

1.8.1. Calibration 

No instrument is intrinsically perfect. Calibration techniques   are used to extend the usefulness 
of an instrument, correcting for offsets, nonlinearity, hysteresis and other undesired 
characteristics of an instrument. To calibrate an instrument one needs to measure known 
quantities, and then devise an Error Model, i.e. a set of equations that allow the instrument raw 
reading to be corrected. Error models often involve lookup tables and interpolation, i.e. they are 
applicable for measurements between the minimum and maximum values of the Calibration 
Standards used. Some calibration scheme is always present in commercial instruments, 
although it often consists of adjusting a few trimmer potentiometers in the associated electronics. 
Calibration becomes essential, mathematically complicated and rather tricky to perform at high 
frequency and/or high precision measurements.  
 
Calibration is related to fitting and interpolation, discussed later in the course. We will discuss 
calibration issues as we discuss specific measurement techniques. 
 
1.8.2. Bridge Measurements 

The sensitivity of a sensor can be increased by incorporating it in a bridge arrangement. 
Impedance varying sensors are often arranged in DC or AC Wheatstone bridges. In some types 
of measurement (e.g. in strain measurements) it is possible to perform a differential 
measurement comparing the outputs of 2 sensors subjected to opposite stimuli (for example, 
tensile and compression).   

 

Figure 1.11: Wheatstone bridge 
 
The Wheatstone Bridge Circuit 
Current to the bridge flows through the excitation leads.  The differential output voltage is 
measured via the sense leads, generally using an instrumentation amplifier.  Frequently more 
than one transducer is used in the bridge to increase the sensitivity of the measurement.  To 
cancel temperature effects, a ‘dummy’ transducer is often used on the same side of the bridge as 
the measuring sensor; this dummy sensor is not subject to the same input signal as the measuring 
sensor. The response equations of the Wheatstone bridge are well known: 
 

 2 4

1 2 3 4
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R RV V
R R R R

⎛ ⎞
= −⎜ ⎟+ +⎝ ⎠

 (1.29) 
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Equilibrium condition Vsense = 0 gives R1R4 = R2R3 
It is straightforward to compute its sensitivity: 

 
Differential sensitivity: 
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Relative sensitivity:  
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 (1.31) 

where F=R2/R1.  This expression has a maximum when F=1, i.e. when transducer elements are 
pairwise equal.  Increasing Vcc will also increase the sensitivity (at the expense of power 
dissipation). 
 
Initial Balancing  
The tolerance of the four bridge components may be such that there is a non-zero offset output 
voltage.  This offset can be corrected by adjusting a balance current (resistor) to pull the bridge 
into balance.  One method of doing this is demonstrated in Figure 1.12 below. 

 

Figure 1.12: Wheatstone bridge with balancing bias 
 
With no signal applied the bridge should be balanced with VA = VB.  If VA is slightly too high, 
then a negative voltage Vref is applied to draw current through RA via R1, and thus pull down the 
value of VA.  Similarly if VA is slightly too low, then a positive voltage is applied at Vref.  
Generally Vref is made variable over some range (e.g. –V to +V) to allow the bridge to be 
balanced for various offset values.  The resistor RA is made large, so that the Vref/RA 
combination appears to the bridge as a constant current source. Of course, this bias balancing 
technique provides a neat way to use the bridge in an automated measurement: One can measure 
the VREF required to bring the bridge in balance. In turn, VREF can easily be under computer 
control. 
 
AC bridges, diode bridges 
By using capacitors and inductors in the place of some or all of Ri the bridge response acquires 
frequency dependence, and can be used to measure capacitance, inductance or frequency. A 
bridge of diodes is a mixer (i.e. an analogue multiplier) used in full wave rectification (i.e. 
homodyne mixing) or heterodyning. Diode bridges are also used as very fast switches. 
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