A device to which change or converts physical quantity to a more easily measurable quantity

Transducer Basic Requirements:
- Ruggedness
- Linearity
- Repeatability
- High Signal to Noise Ratio
- High stability and reliability
Sensor

A device which senses and detects the physical quantity of measurand and converts to electrical form.

Example of sensors:

Mechanical : Bourdon tube pressure meter.

Electrical : Potentiometer

Optical : Photon counter

Chemical : Thermocouples

*All sensors are transducers but not all transducers are sensors
Actuator

A device that senses and detects the electrical quantity and converts to physical form.

Example of actuator:

• Valve in heat exchanger system

• Motor speed control where the motor is driving the conveyor belt

• Magnetic relays that turn on/off of the fans

• Compressor in a control air conditioning
Transducers

- Transducer - is a device which converts the quantity being measured into an optical, mechanical or electrical signal.

- The energy conversion process is referred to as transduction.

- Transducers are of fundamental important for any application that is not purely electronic in nature (i.e. EVERY application) must rely on a transducer at some point.

- Transducer elements – most transducers consist of a sensing element and a conversion or control element.

- The relationship between the measurand and transducer output signal is usually obtained by calibration test.
Transducer

- There are two further distinctions that can be made with regards to transducers:
 - Passive Transducers operate without the need for an external power source (that is: additionally to the power being converted.)
 - Active transducers must draw power from an external power source in order to work.
Variable Conversion Element

A device that converts \textit{analogue signals to digital form} or vice versa.

Example of converters:

ADC -- Analogue to digital converter

DAC -- Digital to analogue converter
Transducer

- Resistance transducers
- Resistance strain gauge
- Resistance temperature transducer
- Photo-emisive cell
- Capacitive transducer
- Inductive transducer
- Linear variable differential transformer
- Piezos-electric transducer
- Electromagnetic transducers
- thermoelectric transducer
- Photoelectric cell
a) Electrical transducers

- Exhibit many of the ideal characteristics
- High sensitivity and useful for remote sensing.
- Can be classified into:
 - Variable control – parameter types, which relies on an external excitation voltage e.g. resistance, capacitance.
 - Self generating types, which produces an output voltage in response to the measurand input and their effects are reversible e.g. electromagnetic, thermoelectric, piezoelectric.
Resistance transducers

Potentiometers – the excitation voltage maybe AC or DC and output voltage is proportional to the input motion.

- The wiper displacement can be rotary, translational or both. Electrical device which has a user-adjustable resistance.

- Usually, this is a three-terminal resistor with a sliding contact in the center (the wiper). If all three terminals are used, it can act as a variable voltage divider.

- If only two terminals are used (one side and the wiper), it acts as a variable resistor. Such potentiometers suffer from the linked problems of resolution and electrical noise.

Schematic symbol for a potentiometer. The arrow represents the moving terminal, called the wiper.
• Construction of a wire-wound circular potentiometer.
 - The resistive element (1) which is trapezoidal, giving a non-linear relationship between resistance and turn angle.
 - The wiper (3) rotates with the axis (4), providing the changeable resistance between the wiper contact (6) and the fixed contacts (5) and (9).
 - The vertical position of the axis is fixed in the body (2) with the ring (7) (below) and the bolt (8) (above).
Potentiometer

The output voltage v_0 of the unloaded potentiometer circuit shown is determined as follows.

Let

$$R_1 = \frac{x_i}{x_T} R_T$$

Where: $x_i = \text{input displacement}$

$x_T = \text{maximum possible displacement}$

$R_T = \text{total resistance of the potentiometer}$

Then output voltage

$$v_0 = v \times \frac{R_1}{R_1 + (R_T - R_1)} = v \times \frac{R_1}{R_T} = v \times \frac{x_i}{x_T} \times \frac{R_T}{R_T} = v \times \frac{x_i}{x_T}$$

Maximum value of $v = \sqrt{P R_f}$

where $P = \text{maximum power dissipation}$

Resolution effects and circuit diagram of resistance potentiometer
b) Resistance strain gauges transducer

- Resistance strain gauges are transducers which exhibit a change in electrical resistance in response to mechanical strain.

Classified into
- i) Bonded
- ii) Unbonded

Strain rosettes are used to measure strain at different direction simultaneously

• The Wheatstone bridge
c) Resistance Temperature Transducers (RTD)

- Metals such as platinum, copper, tungsten exhibit small increase in resistance as the temperature rise.
- Positive temperature coefficient of Resistance depend upon the relationship:
 \[R_1 = R_0 [1 + \alpha (\theta_1 - \theta_0)] \]

where
\[\alpha = \text{temperature coefficient of resistance in } ^\circ\text{C}^{-1} \]
\[R_0 = \text{resistance in ohms at the reference temperature } \theta_0 = 0 ^\circ\text{C} \]
Semiconductors - thermistors

- A **thermistor** is a type of **resistor** used to measure **temperature** changes, relying on the change in its **resistance** with changing temperature.

- Semiconductors such as thermistors which use oxides of manganese, chromium, nickel exhibit large non-linear resistance changes with temperature variations.

- Negative temperature coefficient of resistance. Normally made in the form of discs or small (1mm)
d) Photoconductive cells

- Uses light sensitive semiconductors material e.g. cadmium sulphide, lead sulphide, copper doped germanium.
- When these semiconductor materials are exposed to light, their electrical conductivity is increased.
- The resistance between the metal electrodes decreases as the intensity of the light increases.
Photoemissive cells

- When light strikes the cathode of the photo emissive cell

- Electrons are given sufficient energy to leave the cathode. The positive anode attract these electrons, producing current I_p through a resistance R_L and producing output voltage v_o,

$$v_o = I_p R_L$$

Also $I_p = K_t \varphi$,

$K_t =$ sensitivity (A/lm), $\varphi =$ illumination input (lumen)
f) Capacitive transducers

- The capacitance of a parallel plate capacitor is given by

\[C = \varepsilon_0 \varepsilon_r \frac{A}{d} \text{ farads} \]

where

\[C = \varepsilon_0 \varepsilon_r \frac{A}{d} \text{ farads} \]

\[\varepsilon_0 = \text{permittivity of free space} = 8.854 \times 10^{-12} \text{ F/m} \]

\[\varepsilon_r = \text{relative permittivity of the material between the plates} \]

\[A = \text{overlapping or effective area between plates (m}^2\text{)} \]

\[d = \text{distance between plates (m)} \]

- The capacitance can thus be varied by changing either \(\varepsilon_r \), \(A \) or \(d \).
Capacitive transducers

- First, what is capacitance? Any two metallic objects, positioned in space, can have voltage applied between them.
- Depending on their separation and orientation, the amount of charge that must be applied to the two elements to establish a certain voltage level varies.
- The capacitance is defined as the ratio of the charge to the voltage for a given physical situation. If the capacitance is large, more charge is needed to establish a given voltage difference.
Example of capacitive transducer

(a) Variable area

(b) Variable distance

(c) Variable permittivity
Example of capacitive transducer

- Variable distance capacitive transducers have an infinite resolution, making it most suitable for measuring small increments of displacement.

Important features of capacitive transducers

- Resolution infinite
- Accuracy $\pm 0.1\%$ of full scale
- Displacement ranges 25×10^{-6} m to 10×10^{-3} m
- Rise time less than 50μs
g) Inductive transducers

- Characteristics of inductive

Inductive transducers – The inductance of a coil wound a magnetic circuit is given by

\[L = \frac{\mu_o \mu_r N^2 A}{l} \]

where
- \(\mu_o \) = permeability of free space
 = 4 \times 10^{-7} \text{ H/m}
- \(\mu_r \) = relative permeability
- \(N \) = number of turns of coil
- \(l \) = length of magnetic circuit \((\text{m})\)
- \(A \) = cross sectional area of magnetic circuit \((\text{m}^2)\)

This can be written as

\[L = \frac{N^2}{S} \]

Where \(S = l / (\mu_o \mu_r A) \) = magnetic reluctance of the inductive circuit
Inductive transducers
h) Linear Variable-Differential Transformer – LVDT

- Consist of a primary coil, two secondary coil and a movable magnetic core.
- When excitation voltage V_p is applied to the primary winding, due to transformer action, voltages V_{s1} and V_{s2} are induced in the primary coils.

Cutaway view of an LVDT. Current is driven through the primary coil at A, causing an induction current to be generated through the secondary coils at B.

Details of an l.v.d.t.
LVDT

- The amplitudes of these secondary voltages are dependent on the core displacement x.

![Diagram](image_url)
i) Piezo-electric transducers

- **Piezoelectricity** is the ability of **crystals** and certain ceramic materials to generate a **voltage** in response to applied mechanical **stress**.

- When a force is applied across the faces of certain crystal materials—electrical charges (proportional to the applied force) of opposite polarity appear on the faces.

- These transducers are made from natural crystals such as quartz, Rochelle salt, Lithium sulphate or barium titanate.

- To enhance the response of the transducer charge amplifier is normally used.
J) Electromagnetic transducers

- Employs the generator principle of a coil moving in a magnetic field. The output voltage of the transducer is given as follows. Widely used as velocity transducers.

\[
\text{Output voltage } v_o = -N \frac{d\phi}{dt}
\]

- \(N\) = number of turns on coil
- \(\frac{d\phi}{dt}\) = rate of flux changes (Wb/s)

For the single conductor moving in a magnetic field,

Output voltage \(v_0 = Blv\)

- \(B\) = flux density (T), \(l\) = length of conductor (m), \(v\) = velocity of conductor perpendicular to flux direction (m/s)
k) Thermoelectric transducers (thermocouple)

- When two dissimilar metals or alloys are joined together at each end to form a thermocouple and the ends are at different temperatures, an emf will be developed causing a current to flow around the circuit.

- The emf is proportional to the temperature gradient.

- This is called the Seebeck effect. This transducer has an operating range from -250 °C to 2600 °C.
I) Photoelectric cells

- Make use of the voltaic effect, which is the production of the emf by light energy, incident on the junction of two dissimilar materials.
- The transducer is highly sensitive, good frequency response and can be used for wide range of light intensities.
Mechanical transducers

- Mechanical transducers –
 convert measurand into mechanical parameters eg displacement, pressure or force.
 Often used in cascade with electrical transducers.

a) Force-to-displacement transducers

Spring – is the simplest form of mechanical transducer

\[F = \lambda \times x \]

\[\lambda \] = spring stiffness (N/m) and sensitivity = i.e the stiffer the spring the smaller the sensitivity.

- Cantilever – the deflection, \(y \) caused by force \(F \), is

\[y = k \times F \]

\(k \) = a constant depending on the material and dimensions of the cantilever.
b) Pressure-to-displacement transducers

i) **Diaphragms**-displacement, x is proportional to the pressure difference.

$$x = k \left(p_1 - p_2 \right)$$

k depend on material and dimensions.
Mechanical transducers

ii) Bourdon tubes – widely used in pressure gauges. The relationship between pressure, p and deflection ϕ is;

- $\phi = k \ p$
Mechanical transducers

iii) **Bellows** – also known as pneumatic spring. The relationship between deflection, \(x \), Area A and stiffness \(\lambda \) can be composed.
c) Displacement to pressure transducers – Fapper – Nozzle

Control pressure p_c varies with flapper movement, x if supply pressure p is constant.
Summary

- Types of transistors, and characteristics of transistor has been described.