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Preface

The purpose of this book is to cover a broad range of topics relevant to computer-
assisted techniques for biomedical decision making. The book consists of three parts:
neural networks, artificial intelligence, and alternative approaches. Part I provides a
basis for understanding the theoretical and practical approaches to the development of
neural network models and their implementation in modeling biological systems. At
each stage, theoretical techniques are presented, followed by algorithmic development
and application to specific problems in biomedicine. The objective is to allow the
reader to see how each technique works in practice. A broad range of neural network
techniques and learning algorithms are discussed. At the end of Part I, comparative
analyses of different approaches are given. Part II addresses topics in artificial
intelligence and their applicability to problems in biomedicine. Topics include
knowledge-based acquisition and representation, knowledge-based systems, and
searching strategies. Part III deals with other methodologies, including genetic
algorithms, probabilistic systems, fuzzy systems, and hybrid systems in which two or
more techniques are combined. The concluding chapters include a case study, analysis
of the symbolic versus the numerical approach, and future perspectives. The exercises
range from straightforward problems that measure comprehension of basic concepts
to more challenging problems that permit the development of practical models using
the theoretical techniques. In addition to the exercises in the book, problems related to
each chapter in the text that can be solved using the MATLAB software package are
available by FTP. If you have web access, use ftp://ftp.ieee.org/uploads/press/Hudson.
If you are using an ftp command,

ftp ftp.icee.org

login: anonymous

password: (your email address)

cd uploads/press/Hudson.

Although a number of published texts describe decision-making strategies, this
book focuses on the use of these methods in conjunction with medical and biological
data and the unique problems they pose. The book is intended for upper division or

xxi



Preface

graduate students in medical informatics, biomedical engineering, and allied fields, as
well as for researchers who require an up-to-date and broad-based overview of the
field. Extensive references are included to relevant literature, allowing the student or
researcher to investigate specific topics in depth.

This book can be used in a number of ways for different course structures. Part
I can be used on its own for a one-quarter graduate or one-semester undergraduate
course on neural networks. Part II can be used similarly for an artificial intelligence
course. The entire book is appropriate for a full-year (three-quarter or two-semester)
graduate course on decision-support strategies at an upper division or graduate
level. For a general one-quarter or one-semester overview course, topics can be
selected from each section. A sample course could include Part I: Overview, Chapters
1-3; Part II: Chapters 9-10; and Part III: Chapters 14-17. In addition, within each
chapter, depending on the level of sophistication, the mathematical treatment and
algorithm development can initially be omitted.

The book is intended to give a broad overview of the complex area of decision-
support systems and their uses in medicine and biology. It contains sufficient
theoretical material to provide a deep understanding of the techniques involved. For
researchers in the field, the book is an important tool for initiating in-depth studies on
specific topics, hopefully producing new and interesting theoretical and practical
developments.

Donna L. Hudson
Maurice E. Cohen
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Overview

0.1 EARLY BIOMEDICAL SYSTEMS
0.1.1 History

Since the early 1960s, the computing community has made predictions regarding
the imminent emergence of powerful systems for dealing with medical and biological
data, only to be proven wrong. At the same time, many highly successful systems have
been created in other areas. There are a number of explanations for this lack of success
in the biomedical area. Early computer programs were successful for well-defined sys-
tems, the extreme case being physical models that are accurately described in mathe-
matical terms, including many problems in engineering and physics. The further away
the application is from the physical sciences, the less defined the model becomes.
In general, biomedical systems have some components that are well defined, along
with numerous others that are only partially understood. Straightforward mathemati-
cal or algorithmic modeling in biomedical systems is only possible for some subsys-
tems. As a result, new techniques need to be developed to deal with biomedical appli-
cations.

One early approach utilized pattern recognition techniques. Today pattern recog-
nition is more closely associated with image processing, but in the early years, in the
1960s and 1970s, pattern recognition referred to algorithms that allowed the computer
to search for data patterns. These patterns could be images or groups of parameters as-
sociated with specific diseases. The latter application now is more commonly called pat-
tern classification, with the term pattern recognition reserved for searching for patterns
in images. Several successful systems were developed using pattern classification meth-
ods. Early pioneers in this area included de Dombal et al. (1972), Patrick, Stelmock,
and Shen (1974), Raeside and Chu (1978), Kulikowski (1979), and Cohen, Hudson, and
Deedwania (1985). _

In the 1970s, spurred by an article by Gorry (1973), interest increased in the po-
tential use of artificial intelligence (AI) techniques in medical systems. AI techniques
had been under development since the advent of computers (Jackson, 1974). The Al
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approach became popular because of the drawbacks associated with pattern classifica-
tion. These disadvantages included the seemingly black-box nature of the algorithms
that provided physicians with only a result, along with the inability of the systems to
provide explanations for their conclusions. It was felt that the Al approach would al-
low the inclusion of expert input as well as address the above shortcomings. For a
decade, Al systems in medicine abounded (Miller, 1988), again with limited practical
results. Although several excellent systems emerged, few were used in practice, includ-
ing the most famous of these systems, MYCIN (Shortliffe, 1976). In the mid-1980s,
neural network models began to reemerge as an alternative to the Al systems. These
models had much in common with the early pattern classification systems in that their
knowledge was derived from data rather than from experts. Chapter 1 gives an
overview of the historical development of neural networks, and Chapter 9 presents an
overview of artificial intelligence.

0.1.2 Medical Records

In addition to the problems involved in developing appropriate paradigms for
biomedical systems, another major difficulty centers on the form of the medical record.
Medical data are inherently complicated because so many diverse components are im-
portant: quantitative test results, analog output such as electrocardiograms and elec-
troencephalograms, pictorial output such as radiographs, computed tomography (CT),
magnetic resonance imaging (MRI), nuclear medicine scans, and ultrasound, as well as
handwritten notes. Types of medical data are treated in detail in Section O.2 of this
chapter. In addition to the complexity of data types, medical records are traditionally
handwritten in free form and contain many comments. Specific test results, history, and
clinical findings are typically found within the written comments. For the last forty
years, numerous attempts have been made to organize these diverse data types into a
format that can be easily automated.

Greenes et al. (1969) at Massachusetts General Hospital did early work in the de-
velopment of the computerized medical record. They developed the computer-based
medical record system (COSTAR) system, organized as a hierarchical database.
PROMIS (problem-oriented medical information system), developed at the Univer-
sity of Vermont (Schultz, 1976), focused on the problem of organization of medical
data, as well as feedback on medical action. Medical information is organized in
frames. The ARAMIS system (Fries, 1972), developed at Stanford University in the
1970s, built on some of the ideas in PROMIS but in addition introduced the important
concept of the time-oriented data record (TOD) to display the progress of a patient
and to permit the development of causal relationships. The goal of the HELP program
developed by Warner, Rutherford, and Houtchens (1972) was to assist in medical de-
cision making. The system provided access to raw data, as well as all currently relevant
decisions previously made on the patient. Miller began development of the MEDUS/A
system (Ben Bassat et al., 1980) at Harvard in 1977 using frames, as did PROMIS.
(These systems are discussed in more detail in Chapter 9.)

Researchers continue to struggle with the problem of computerizing medical
records. It is a topic of interest at most conferences dealing with computers in medi-
cine. For example, at the 1996 American Medical Informatics Association Fall Sympo-
sium, one of the major topics was the computer-based patient record. New graphical
techniques allow the inclusion of visual data directly in the patient record. With the ad-
vent of the Internet, new pressure has arisen for standardization of the medical record
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so that it can be utilized at remote sites. Other advances permit the inclusion of mag-
netic strips on cards so that individuals can carry their medical records with them. New
technologies have given rise to new issues, including privacy concerns, particularly as
they relate to the transmission of medical records on the Internet. Recent work is con-
centrating on information sharing, security, standards, and appropriate uses. In many
locations, however, the paper record remains the primary source of information, espe-
cially for patient history and physical exam parameters.

0.1.3 Drawbacks of Traditional Approaches

Strict algorithmic approaches to decision support in medicine have not been suc-
cessful because in most instances complete models that describe biological system
functioning are not known. The lack of deterministic models was recognized early,
leading to the development of pattern recognition approaches to address classification
problems, such as differential diagnosis. These models allowed the computer to search
for patterns in the data. Approaches based solely on accumulated data present a num-
ber of drawbacks. The most obvious problem is that not only is the model dependent
on the accuracy of the data, but also it is limited by the applicability of the data to other
populations. For example, if the data were collected on a male population between the
ages of 18 and 25, a common occurrence in military hospitals, any models generated
probably could not be generalized to the population as a whole. This problem plagues
many medical studies. A study done on heart disease in Finland, which has a largely ho-
mogeneous population, may not apply in the United States, with its extremely diverse
population. The knowledge-based approach avoids this problem by using expert input
as its knowledge base. The knowledge-based approach has inherent problems. Using
only one or a small number of experts as consultants to develop the knowledge base
may reveal differences of opinion and may produce knowledge bases that are not in
agreement with other experts. An additional problem with expert-derived knowledge
bases is the development of methods for incorporating rapidly developing new knowl-
edge.

0.1.4 Numerical versus Symbolic Approaches

Experts continue to debate whether the symbolic approach (knowledge-based
systems using expert input) or the numerical approach (pattern recognition and neural
networks using data-derived knowledge) is the proper route for accommodating bio-
medical data. Recently, a number of hybrid systems have been developed that take ad-
vantage of both data-derived information and expert-supplied knowledge (Kandel and
Langholz, 1992; Cohen and Hudson, 1992). These hybrid systems rely on two or more
techniques that are brought to bear on solving a single problem. (Hybrid systems are
discussed in Chapters 17 and 18.)

0.2 MEDICAL AND BIOLOGICAL DATA

Medical and biological data are inherently complex. In most medical records, a num-
ber of types of data are encountered, including items that describe patient history,
physical exams, laboratory tests, pathology reports, imaging reports, and electrocardio-
gram reports. The types of data that are present must be examined carefully because
they influence the kind of analysis that can be done.
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0.2.1 Binary Data

Binary data have two possible responses, usually yes/no, but also male/female,
present/absent, and so on. Binary data usually assume the values 0 and 1. A variation
on binary data is bipolar data in which the variable can assume the values of —1
and 1.

0.2.2 Categorical Data

Categorical data have more than two responses. An example would be progres-
sion of severity of symptoms: decrease, no change, increase. A special type of categor-
ical is ordered categorical in which responses can be ranked from worst to best or vice
versa. An example of a categorical variable is type of cardiac drug taken. Categories
may assume values such as calcium channel blocker, beta-blocker, and anti-arrhythmic
agent. The categories are then numerically coded. The progression of symptoms as de-
fined above represents an ordered categorical variable.

0.2.3 Integer Data

Examples of integer data include variables such as blood pressure where an in-
herent ordering is present, but only integer rather than real values can be assumed. In
general, integer data items can be treated the same as continuous data.

0.2.4 Continuous Data

Mathematically speaking, continuous data are the best behaved of all data types
and can be easily manipulated in any type of model. However, a few words of caution
are due here. In most data, and especially biomedical data, the precision and accuracy
of the number must be considered.

0.2.5 Fuzzy Data

A test result depends on the precision of the instrument. The level of precision
is usually given in the manual. A hemoglobin level of 14.3 may have a + 0.1 factor due
to the precision of the instrument. The number 14.3 is generally used as a crisp num-
ber. An alternative is to define a fuzzy number that attempts to include the
imprecision information in the model. First we will consider continuous fuzzy data.
An example of continuous data is a test result or an instrument reading such as
body temperature or potassium level. A potassium level of 4.2 may have been ob-
tained. However, all instrument readings and test results are subject to some degree
of uncertainty, it. may therefore be more accurate to represent the potassium level to
be in the interval (4.1, 4.3). In other words, it can be considered to be a fuzzy number.
In the crisp case, this interpretation would degenerate into (4.2, 4.2) or just the num-
ber itself. An example of a fuzzy number representing a test result is shown in Figure
0.1 (Hudson and Cohen, 1994). Fuzzy numbers are represented by membership func-
tions that are generally considered to be either triangular or trapezoidal. A triangular
membership function has only one value with full membership (a value of 1.0). A
trapezoidal membership function has a range of values with full membership. (Tech-
niques for inclusion of these data in the neural network models are discussed in Chap-
ter 16.)
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Figure 0.1 Membership Functions for Fuzzy Numbers for Two Continuous Vari-
ables: Systolic and Diastolic Blood Pressures.

A second useful construct involves the idea of a membership function that indi-
cates normal and abnormal ranges of variables. The membership function assigns a
quantifier to a particular numerical value based on a predefined function. An example
is given in Figure O.2.

0.2.6 Temporal Data

Early computer-aided decision support systems largely ignored temporal data, al-
though temporal information is very important in diagnostic processes. This is true for
the individual patient record in which changes in laboratory tests, physical findings, and
medical images can have important implications for identifying disease states and for
following the progression of disease processes. The failure to include these important
indicators stemmed from the difficulties they posed in both representation and analy-
sis. In fact, even in database design, temporal data pose special representation prob-
lems, since they are usually open-ended.

Temporal data can be divided into the following categories, depending on which
aspects of the data are important (Hudson and Cohen, 1992):

1. A Data: The change in value from the previous recording (example: blood

pressure).
H Decreased Normal Increased
1
0
50 100 150
Systolic Blood Pressure
mm Hg

Figure 0.2 Membership Function for Ranges of Systolic Blood Pressure.
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2. Normalized A Data: The change in value relative to the time interval (exam-
ple: weight gain or loss/month).

3. Duration Data: The duration of time for which the finding persisted (example:
fatigue).

4. Sequence Data: A particular sequence of events (example: fever occurring be-
fore rash occurring before nausea).

In later chapters, we will investigate techniques for including temporal data in both
knowledge-based and neural network systems.

0.2.7 Time Series Data

Time series data occur in a number of contexts in biomedical systems. By far
the most common time series that is used for diagnostic purposes in medicine is the
electrocardiogram (ECG), an example of which is shown in Figure O.3. The analysis of
time series is quite complex; accordingly, only a brief summary will be given here.
Time series can be divided into a number of types. The ECG shown in Figure Q.3 is
a specific type of time series that contains an inherent pattern, known as the QRS
complex, associated with each heartbeat. The QRS complex is shown in Figure Q4.
The existence of this repeated pattern simplifies the analysis of the time series. By
contrast, the electroencephalogram (EEG) which measures brain waves has no inher-
ent, repetitive pattern, as can be seen in Figure O.5. To complicate matters further,
both the ECG and EEG are recorded using multiple electrodes, with each lead giving
a different pattern. The EEG may use as many as twenty-two leads. Other types of
time series data are also useful in determining biological functions, such as hemody-

Figure 0.3 Example of an Electrocardiogram (ECG).
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namic studies. Techniques that have recently been shown to be useful in the analysis
of biological time series include wavelet analysis and chaos theory (Cohen et al.,
1990). (These techniques are discussed in detail in relation to ECG analysis in
Chapters 3 and 18.)

0.2.8 Image Data

One area where computers have scored great success in biomedicine has been
medical imaging. Probably the greatest medical advance in the late twentieth century
was the development of CT scanning techniques, which in many instances removed the
need for exploratory surgery. The same CT techniques that make image reconstruction
possible using X rays have subsequently been applied to magnetic resonance imaging,
a more sensitive technique for analysis of soft tissue and for metabolic studies. The re-
cent development of digital radiography is replacing traditional methods of storing
X-ray film, with direct computer storage providing the ability to transfer images from
the office to the physician’s home or to remote locations. These systems, denoted PACs
(Picture Archiving and Communications System), are becoming more common (Ratib
et al., 1992). A number of techniques have also been developed for analysis of images
that allow for edge detection, image enhancement, and filtering (Cohen and Hudson,
1988).

Regardless of the imaging technology, all digitized images use the same general
format. An image is made up of pixels (picture elements), with the number of pixels
per row and the number of rows determining the resolution of the image. For example,
an image that is 512 X 512 has 512 pixels in each row with 512 rows; thus the image
contains over 250,000 pixels. This explains why images require so much computer stor-
age! The number of gray levels in a black and white image determines the number of
bits per pixel. If 8 bits are used per pixel, 2° or 256 gray levels can be represented. For
color images, each bit configuration represents a unique color, so the same 256 combi-
nations can represent 256 colors. If the image is three dimensional, the digital repre-
sentation uses voxels (volume elements) instead of pixels.

Why have computer-imaging techniques succeeded where computerization of
other medical information has failed? First, imaging is a well-defined problem. Second,
the format of computer images is the same regardless of the technology used to cap-
ture the image, whether X rays, ultrasound, magnetic resonance, or nuclear imaging.
Thus all images can be stored, manipulated, and transferred by the same methods.
Each image, however, uses a large amount of disk space, and transmission requires
high bandwidth to achieve acceptable speed. The usefulness of digital imaging is only
now becoming a reality because computer hardware advances have made it feasible to
manipulate and transfer images at reasonable speeds.

0.3 ORGANIZATION OF THE BOOK

The book is divided into three parts: neural network modeling, artificial intelligence
approaches, and alternative approaches to the development of biomedical decision
aids. Each chapter contains relevant references to topics covered in that chapter, but
the bibliographies are not meant to be exhaustive. The exercises included at the end of
each chapter range from straightforward problems designed to ensure an understand-
ing of the basic concepts to more complex exercises that can be developed into pro-
jects.
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Foundations
of Neural Networks

1.1 OBJECTIVES OF NEURAL NETWORKS

Neural network research can be divided into two areas of investigation. The first area,
the direct problem, employs computer and engineering techniques to model the human
brain. This type of modeling is used extensively by cognitive scientists (Harley, 1998)
and can be useful in a number of domains, including neuropsychiatry (Rialle and Stip,
1994, Ruppin, Reggia, and Horn, 1996), and neurophysiology (Saugstad, 1994). For
more detailed coverage of the direct problem, the reader should consult MacGregor
(1987) and Aakerlund and Hemmingsen (1998).

The second area, the inverse problem, simulates biological structures with the ob-
jective of creating computer or engineering systems. The inverse problem is applied ex-
tensively in building computer-assisted decision aids used in differential diagnosis,
modeling of disease processes, and construction of more complex biomedical models.
Part 1 of this book concentrates mainly on the inverse problem, although the two
areas cannot be completely separated since one problem often sheds light on the other.

Neural networks are used to solve problems in which the complete formulation
is unknown—that is, no causal model or mathematical representation exists, usually
because the problem itself is not completely understood. The neural network uses data
to derive patterns that are relevant in differentiating the groups. Neural network mod-
els fall into the category of soft computing, as do fuzzy logic approaches, in that solu-
tions are found to approximate problems rather than approximating solutions of exact
formulations.

1.1.1 Modeling Biomedical Systems

Historically, numerous -modeling techniques have been used, including mathe-
matical approaches and simulation. Some of the early systems were quite successful,
especially in the area of drug therapy. Realistic models for most biological systems are
still difficult to achieve both because of our limited knowledge and the complexity of
these systems. Recent approaches have used chaos theory to address nonlinear dy-
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namics in biological systems. Neural network modeling of biomedical systems com-
prises the direct problem and has resulted in a number of interesting applications in
which neural network models successfully mimic characteristics of human learning as
well as providing models of learning disorders. In general, modeling and simulation
systems are outside the scope of this book with two exceptions: features of neural net-
works relevant to modeling and the use of chaos theory in a hybrid system (illustrated
in Chapter 18). Modeling using symbolic techniques is considered in Part II of this
book.

1.1.2 Establishment of Decision-Making Systems
The use of neural network models as decision aids comprises the inverse prob-

lem. These systems have their historical foundations in earlier pattern recognition
techniques and limited neural network models.

1.2 BIOLOGICAL FOUNDATIONS

OF NEURAL NETWORKS

The motivating factor behind neural network modeling was the structure of biological
nervous systems, or biological neural networks. To draw attention to this parallel,
neural network models are sometimes referred to as artificial neural networks
(ANNSs). Although some basics are known about biological nervous systems, a great
deal remains unknown,

1.2.1 Structure of the Neuron
Figure 1.1 shows a simple biological cell. A semipermeable membrane that is be-

tween 70 and 100 Angstroms in thickness surrounds the cell. In the interior of the cell,
components include the nucleus, the mitochondria, and the Golgi bodies. The nucleus

+
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Mitochondria
&

Golgi Bodies

Figure 1.1 Structure of a Biological Cell.
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consists of nuclear sap and a nucleoprotein-rich network from which chromosomes
and nucleoli arise. A nucleolus contains DNA templates for RNA. The mitochondria
produce energy for the cell through cellular respiration. Golgi bodies are involved in
the packaging of secretory proteins (Rogers and Kabrisky, 1991).

Figure 1.2 shows a neuron, which is an extension of the simple cell in that two
types of appendages have been formed: multiple dendrites and an axon. The dendrites
receive input from other neurons, whereas the axon is an output channel to other neu-
rons. Note that a neuron still possesses all the internal features of a regular cell as
shown in Figure 1.1. The neuron has important basis characteristics, and it has a num-
ber of inputs called dendrites and one output called the axon. The cell membrane has
an electrical resting potential of —70 mV. The resting potential is maintained by pump-
ing positive ions out of the cell. The principal pump is the sodium (Na*) pump.
The main difference between a neuron and an ordinary cell is that the neuron is ex-
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Figure 1.2 Structure of a Neuron.
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citable. Because of inputs from the dendrites, the cell may become unable to maintain
the —70 mV resting potential, resulting in an action potential that is a pulse transmit-
ted down the axon. Note that the action potential results only after a certain threshold
has been exceeded, for example, if the potential is raised above —50 mV. After releas-
ing the pulse, the neuron returns to its resting potential. The action potential causes a
release of certain biochemical agents known as neurotransmitters that are the means
by which messages are transmitted to the dendrites of nearby neurons. These neural
transmitters may have either an excitatory or inhibitory effect on neighboring neurons.
A number of biochemical transmitters are known, including acetylcholine (usually ex-
citatory), catecholamines, such as dopamine, norepinephrine, and epinephrine, and
other amino acid derivatives such as histamine, serotonin, glycine, and y-aminobutyric
acid (GABA). GABA and glycine are two important inhibitory transmitters (Butter,
1968).

1.2.2 Structure of the Central Nervous System

The puzzle of how individual neurons are organized into complex neuronal struc-
tures has been the subject of a great deal of research over the years. Santiago Ramén
de Cajal was the first to discover the complex interconnection structure in the cerebral
cortex summarized in an English translation by DeFelipe and Jones (1988). Along with
his associate Camillo Golgi (Golgi, 1886) he produced photographs of the structures
by applying dyes that were absorbed differently. For this work, Cajal and Golgi were
awarded the 1906 Nobel Prize in medicine.

Later, in the 1930s, Lorente de N6, one of Cajal’s students, examined the types of
neurons in the cerebral cortex showing 32 to 34 different types based on shape classi-
fication, not on function (Asanuma and Wilson, 1979).

In the 1940s, Hodgkin and Huxley (Hodgkin, 1964; Huxley, 1971) began their
well-known work on the giant squid, chosen because of its two very large neurons.
Hodgkin and Huxley were awarded the 1963 Nobel Prize for their investigations into
threshold, inhibition, and excitation in the giant squid axon.

Next, Hubel and Wiesel (1962) did extensive investigation into the cerebral cor-
tex of the cat. They mapped many complex structures and tracked the path from the
optic nerve to the lateral geniculate body to the visual cortex. They found columns of
cells in the visual cortex that appeared to be responsible for processing various shapes.
In the process, they distinguished between simple, complex, and hypercomplex cells.
Their work also emphasized the parallel nature of the visual processing system. Figure
1.3 shows the optical pathways Hubel and Wiesel mapped out.

1.3 EARLY NEURAL MODELS

1.3.1 The McCulloch and Pitts Neuron

In a 1943 paper, McCulloch and Pitts (1943) presented a two-state logical deci-
sion element model based on a simplified neuron which they used to compute Boolean
functions. They declared that “neural events and the relationship among them can
be treated by means of propositional logic” (p. 115). Their artificial neuron per-
formed logical operations on two or more inputs and produced an output if a thresh-
old value was exceeded. This work can be considered the ancestor of artificial neural
networks.
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Figure 1.3 Optical Pathways.

1.3.2 Hebbian Learning

In 1949, Donald Hebb (1949) published his approach to learning laws. In his orig-
inal approach, excitatory neuron coupling weights were increased by a subsequent fir-
ing, based on the idea of learning driven by activity. However, weights could only in-
crease. (Many later models were based on this initial work and are discussed in detail
in Chapter 5.)

1.3.3 ADALINE
ADALINE, an acronym for ADAptive LINear Element, was developed by

Bernard Widrow (Widrow and Stearns, 1985). He used the mathematics of adaptive
signal processing to produce the first commercial neural network.

1.3.4 Rosenblatt Perceptron

In the 1950s, Rosenblatt (1962) introduced models of the brain which he called
perceptrons. Although his representation of artificial neurons was based on the neuron
models of McCulloch and Pitts, he departed from their approach by basing his model
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on probability theory rather than symbolic logic. The photoperceptron as defined by
Rosenblatt responded to optical patterns, and contained a sensory, an association, and
a response area (Figure 1.4). The sensory area corresponds to the retinal structure.
Each point responds to light in an on/off manner; input is then transmitted to the as-
sociation area. The connections have three possible weights: 1 (excitatory),—1 (in-
hibitory), or 0. When a pattern is presented to the sensory area, a unit in the associa-
tion area becomes active providing its value exceeds a predetermined threshold 6. At
time ¢, the output from the association area is defined as

y(t) = sgn X [x;(1) wi(t) — 6] (1.1)

where sgn is either +1 (for positive argument) or —1 (for negative argument), x,(¢) is
the ith input signal, and w;(¢) is the weight of the ith input to the node.

The basic perceptron model was an example of a learning algorithm. Nilsson
(1965) summarizes these early learning systems,

1.3.5 Problems with Early Systems

Neural network research experienced a general setback following the publica-
tion of a paper by Minsky and Pappert (1969) proving that a single-layer perceptron
could not solve the exclusive or (XOR) problem. In fact, single-layer perceptrons can
only separate categories that are linearly separable, that is, separable by a hyperplane
(in two dimensions, a line). Figure 1.5 shows the XOR problem; ¢, is the category in
which the polarity of the features is the same, which should have an output of 0 for the
XOR, and c; is the category in which the polarity differs, which should have an output
of 1 for the XOR. There is no line that can separate these categories. Unfortunately,
even though Rosenblatt had proposed the use of multilayer networks to overcome this
problem, these criticisms stymied neural network research for well over a decade. The
limitation of the current computers in terms of both memory and speed was one rea-
son for the loss of interest in the early neural network research. The problems ad-
dressed as examples in the neural network models were fairly simple, with few nodes.
The training often took hours to accomplish. Many justifiably felt that these time and

/1N

Sensory Area Association Area Response Area Indicator Light
(Photoreceptors, s-units) (Associators, a-units) (Responders, r-units)
Positive Feedback
_——————
Negative Feedback >

Figure 1.4 Diagram of Simple Photoperceptron.
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XOR Truth Table
Input 1 Input 2 Output
0 0 0

0 1 1

1 0 1

1 i () . Ly

True

False

OI. ©9) 1l,(o,l)

Figure 1.5 The Exclusive OR Problem (XOR).

memory considerations made it difficult to tackle practical problems. With the advent
of faster and faster hardware with large, inexpensive memory, these worries ceased to
be considerations in the new generation of neural network models.

1.4 PRECURSOR TO CURRENT MODELS:
PATTERN CLASSIFICATION

Pattern classification (sometimes called pattern recognition) was one of the first meth-
ods applied to medical applications and has found applications in diverse areas from
electrocardiograms to genetic sorting. (For an historical perspective of pattern recog-
nition, see Chapter 9.)

What is a pattern recognition problem? As an example, consider a group of pa-
tients who have come to the emergency room with chest pain. Subsequently, some of
these patients are found to have had a myocardial infarction (MI), and others are
found to have had angina. The first objective of a pattern classification system is to de-
termine which parameters enabled the medical staff to distinguish between these two
diagnoses. This is a two-category problem. The initial phase consists of feature extrac-
tion. Features are properties of items to be classified that will aid in discriminating be-
tween classes.

1.4.1 Feature Extraction
Determining features is the most crucial step in designing a pattern recognition

decision aid. In the emergency room example given earlier, we must identify parame-
ters useful in distinguishing between the two classes. Identification of possible features
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requires domain knowledge or access to domain knowledge relevant to the applica-
tion. As a simple illustration, suppose we know that patients with Mls in general have
low blood pressure, whereas those with angina in general have elevated blood pres-
sure. If we plot the histograms for blood pressure for all patients with either disease,
we may get a plot similar to that shown in Figure 1.6. Note the area of overlap between
the two groups, so that the groups cannot be completely separated by this one variable.
In addition, we know that patients with MIs may have elevated white blood counts,
whereas patients with angina have normal white blood counts. If we consider only
these two parameters, or features, we have a two-variable problem. We combine these
features into a two-dimensional feature vector x = (x1, x,), where x; = systolic blood
pressure (BP) and x, = white blood count (WBC). For the sake of this example, we will
consider only systolic blood pressure. In this simple case we can plot x; versus x,. Fig-
ure 1.7 shows a sample plot of five cases in each category. The squares represent cases
with MI, and the circles represent cases with angina.

The second objective of a pattern classification system is to find a separator that
will divide these two classes by placing as many samples into the correct category as
possible. The dashed line in Figure 1.7 shows a possible separator with one misclassifi-
cation. Additional features may result in better classification or a more robust model.
The following considerations should be kept in mind:

1. Look for a classification that minimizes error.
Ideal: all cases classified correctly; if not possible, minimize either the number
of errors or the cost of errors.

2. More features may be needed.
For three features, Figure 1.6 becomes 3-D, for four or more, no picture!

200
180
160
140 ¢
120

5 Ml

Figure 1.6 Histograms of Systolic Blood Pressures for Myocardial Infarction (MI) and Angina.
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Figure 1.7 Plot of White Blood Count versus Systolic Blood Pressure.

3. More classes may be relevant.
For example, MI, angina, and congestive heart failure.

The final objective of pattern classification is to use the separator to classify new
cases. In this way, the pattern recognition system is used as a decision aid.

1.4.2 Supervised Learning

The preceding classification is an example of supervised learning: data of known
classification are used to determine important parameters (components of the feature
vector) that contribute to the correct decision. To use supervised learning, a training set
must be available for development of the separating vector. A test set is then used to
determine the accuracy of the separator. Ideally, the training set and test set should be
disjoint.

The question that remains is, How can the separating vector be obtained? In our
simple example, we did it geometrically; for data of higher dimensionality, this will not
be possible. The separator is determined through a learning algorithm that is the heart
of the method. (Learning algorithms will be discussed shortly and in detail in Chap-
ter 6.)

1.4.3 Unsupervised Learning

Unsupervised learning is a much more difficult problem. In this case, data of un-
known classification are used. The objective is to try to find patterns in the data that
will allow the data to be grouped or clustered according to similar characteristics with
the characteristics defined in the feature vector. The main method for accomplishing
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unsupervised learning is clustering, with a number of variations. (Clustering will be dis-
cussed in detail in Chapter 5. Recent approaches also include data mining and genetic
algorithms, discussed in Chapter 14.)

1.4.4 Learning Algorithms

The purpose of a learning algorithm is to determine which features are important
for a particular decision as well as their relative importance. In most pattern classifica-
tion systems, a feature vector is defined as

X= (xhxz’- .o axm) (12)

where each x; is a feature and #n is the dimensionality of the vector. In classification pro-
grams, the objective in the most straightforward two-class problem is to obtain a deci-
sion surface that can separate the data. The two-variable equivalent to this is shown in
Figure 1.7. For the n-dimensional case, we want the following to hold:

D(x) > 0 = x belongs in class 1
D(x) < 0 = x belongs in class 2
(D(x) = 0is indeterminate)

where
D(x) = Z= Wix; (1.3)
i=1
or in vector format
DX)=w-x 1.4)

In order to find the value for D(x), the values for the two vectors w and x must be
known. The values for x are obtained from the data. It is the job of the learning algo-
rithm to determine the values for w. In supervised learning, an additional important
piece of information is available: for each x, the class to which it belongs is known.

A general algorithm for supervised learning follows:

Make an initial guess for each component of w.
Select a training set of data.
For each vector in the training set:
Compute D(x)
If D(x) > 0 and x € class 1 or D(x) < 0 and x € class 2, do not adjust w
If D(x) > 0 and x € class 2 adjust w according to rule 1
If D(x) < 0 and x € class 1 adjust w according to rule 2
Until w does not change (or until criterion function is minimized).

Basically, learning algorithms differ in the definition of rules 1 and 2 in the preceding
algorithm and in the determination of the criterion function that determines when the
iterative weight adjustment should stop. A number of approaches have been used, in-
cluding Bayes learning (Chapter 15), perceptrons (Chapter 4), potential functions
(Chapter 4), and backpropagation (Chapter 4).

The simple algorithm given above is complicated in practice by a number of fac-
tors. The most obvious problem is what to do if w does not cease to change, which will
happen when it is not possible to correctly classify all samples in the training set. If all
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samples can be correctly classified, the set is said to be linearly separable. If not, the al-
gorithm must terminate on some other condition, which will hopefully ensure that as
many samples as possible are classified correctly. This is handled by defining what is
known as a criterion function. These functions are defined differently depending on the
approach taken and will be discussed in detail later in this book.

As an example, consider our two-dimensional problem given earlier. This is a
two-category problem. We will consider the presence of MI to be class 1 and the pres-
ence of angina to be class 2. Our problem is then defined by the following components:

D(x) = W - X = wixp + waxp 1.5)
where
X1 systolic blood pressure
Xy white blood count

If D(x) > 0, then we will assume that x belongs to class 1 (MI); if D(x) < 0, we will as-
sume that x belongs to class 2 (angina); if D(x) = 0, then we can make no determina-
tion.

For the purpose of illustration, we will use the perceptron learning rule, de-
fined as

wi(t + 1) = wi(t) + n[d(®) — y(Olx(2) (1.6)

that computes each weight adjustment. The iteration is represented by ¢, and 7 is the
learning rate, which we will set to 0.01. We define y(¢) and d(¢) as follows:

y() = 1if D(x) >0

y() = —-1if D(x) <0

d(t) = 11if vector belongs to class 1
d(t) = —1 if vector belongs to class 2

Table 1.1 contains values for our ten feature vectors. To make our calculations
simpler, we can scale the data so that both values are of similar magnitudes. We will di-
vide all WBC values by 1000 and all blood pressure values by 10. We will select the first
two vectors of each class, alternating classes, for inclusion in the training set:

t; = (11.0,13.0) (vector xy, class 1)
t, = (18.0,5.0) (vector xg, class 2)

TABLE 1.1 Feature Vector Values for Differentiation between
Myocardial Infarction (MI) and Angina

Feature Vector Diagnosis Systolic Blood Pressure White Blood Count
X MI 110 13,000
x> MI 90 12,000
X3 MI 85 18,000
X4 MI 120 8,000
Xs MI 130 18,000
X¢ Angina 180 5,000
X7 Angina 200 7,500
Xg Angina 165 6,000
X Angina 190 6,500

X10 Angina 120 9,000
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ts = (9.0,12.0) (vector x,, class 1)
t; = (20.0,7.5) (vector x5, class 2)
We will make an initial guess for each weight as wy = —0.3, w, = 1.0. Initially, we

substitute vector t; into Eq. (1.5):

D(t;) = —0.3 (11.0) +1.0(13) > 0; therefore y(f) = 1
t; belongs to class 1; therefore d(f) = 1

Substituting into Eq. (1.6), we see that as the classification is correct, no weight adjust-
ment is made. We then proceed with the second vector substitution, which also results
in no weight adjustment as does the third. For the fourth vector

D(ty) = —0.3(20.0) + 1.0(7.5) > 0,y(t) = 1
t, belongs to class 2

Therefore, substituting into Eq. (1.6)

wi(1) = —0.3 + 0.01[(—1 — (1)] 200 = —0.7
wo(1) = 1.0 + 0.01[—1 —(1)]7.5 = 0.85

The process must then begin again with t; and continue until all vectors are classified
correctly. After completion of this process, the resulting weights are:

Wi = -0.7
Wy = 0.85
Our decision surface is
D(X) = "0.7X1 + 0.85x2 (17)

The remainder of the vectors in Table 1.1 will be our test set, which will be used to de-

termine how well our decision surface works. For example, substituting vector x; from
Table 1.1 in Eq. (1.5):

D(x3) = —0.7(8.5) + 0.85%(18) > 0, which is correct since vector x; belongs to class 1.

1.5 RESURGENCE OF THE NEURAL
NETWORK APPROACH

Neural networks have found a wide range of applications in the last decade (Carpen-
ter and Grossberg, 1988; Sabbatini, 1992; Computer Magazine, 1988) and in many cases
have replaced knowledge-based approaches that became popular in the 1970s (Davis
and Lenat, 1982; Barr and Feigenbaum, 1982). Neural networks permit rapid develop-
ment of a model through the learning algorithm if sufficient data are available.
Resurgence of the neural network approach began in the late 1970s and early
1980s with the work of Kohonen, Hopfield, Grossberg, and Rummelhart. In the 1970s,
Grossberg (1988) developed the adaptive resonance theory (ART) and theories about
the functioning of biological nervous systems that Carpenter and Grossberg (1988)
later developed into self-organizing neural network architectures. Kohonen (1984) also
did pioneering work on self-organizing networks. In the early 1980s, Hopfield and oth-
ers introduced new approaches based on the early work of Hebb (1949). Rummelhart
and his group (Rummelhart and McClelland, 1986) developed the backpropagation
method, which became one of the most widely used approaches in neural network de-
sign. Hypernet, developed by Cohen and Hudson in the early 1980s (Cohen, Hudson,



Section 1.6 m Basic Concepts 25

and Anderson, 1989), extended the potential function approach and in the process in-
troduced the single and multidimensional Cohen orthogonal functions that encom-
passed the possibility of fractional contribution of nodes. The new approaches devel-
oped by these researchers, as well as others, overcame the limitations of the early
neural network approaches. These methods, together with the advances made in com-
puter architecture providing faster processing and cheaper memory, made the neural
network concept practical. (In Chapters 2 through 5 we will examine in detail the new
neural network structures that began in the 1980s, along with biomedical applications
for each method.)

1.6 BASIC CONCEPTS
1.6.1 Artificial Neurons

One of the basic ideas behind neural networks is to construct artificial neurons
that have the characteristics of actual neurons. Artificial neurons, or nodes as they are
often called, receive input from multiple other nodes. These multiple inputs can be con-
sidered as dendrites in the biological neuron. Like neurons, the nodes produce one out-
put that can be associated with the axon. In computing the output, the input informa-
tion is weighted, either positively or negatively. These weights are analogous to the ex-
citatory and inhibitory action of the chemical transmitters in the actual neuron. In neu-
rons, an output results only if a certain threshold voltage is exceeded. This action is
sometimes simulated by use of threshold values in the node, although not all models
use the threshold approach.

1.6.2 Selection of Input Nodes

In the initial design of a neural network, the number and type of input nodes
must be determined. These decisions are based on the nature of the problem. As we
will see in the next chapter, nodes may be binary, representing only an on or an off
state, or they may accept continuous values. The input nodes must be able to represent
all relevant information that is pertinent to the problem. The process of defining input
nodes is connected with feature selection in which salient features of the problem un-
der consideration are analyzed. This process is discussed in Chapter 3.

1.6.3 Network Structure

The early neural networks were only two-layer structures. As discussed earlier,
this construction greatly limited their usefulness in that only linear problems could be
represented. In the second generation of neural networks, new structures were devel-
oped which consisted of three or more layers. The most common structure is the three-
layer network as illustrated in Figure 1.8. These three layers consist of the input layer,
the hidden or interactive layer, and the output layer. Many other network configura-
tions have been used, but in general the three-layer network is capable of addressing
all problems which the more complex structures address. The manner in which nodes
are connected is different depending on the approach and will be described in detail in
later chapters when each method is discussed.

1.6.3.1 Feed-Forward Networks. The methods described in Section 1.4 apply
to feed-forward networks. These networks compute weights that are used to determine
output from a node that is subsequently fed to the next layer. In the detailed example
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Figure 1.8 Three-Layer Neural Network Structure.

given earlier, the weights determined the impact that the input nodes have on the out-
put, but no information is fed back to the input nodes.

1.6.3.2 Feed-Backward Networks. The revival of neural networks began in
the early 1980s with the work of Hopfield (1982). The Hopfield model was completely
different from earlier approaches in that the neurons, or nodes, had two-way connec-
tions. Instead of adjusting weights to tune the output of nodes, the network stored pat-
terns that were later used to process unknown input vectors. (The Hopfield net and
other feed-backward approaches will be described in detail in Chapter 2.)

1.6.4 Learning Mechanism

We saw an example of a learning algorithm in Section 1.4, with a specific learn-
ing rule given by the perceptron learning rule. As we will learn in subsequent chapters,
many different learning mechanisms have been tried in neural networks. All have ad-
vantages and disadvantages. Some offer strong mathematical foundations, whereas
others are more ad hoc. The learning mechanism affects the speed of convergence of
the network, and indeed determines whether or not it converges at all. It can also af-
fect the accuracy of the model in classification of unknown cases.

1.6.5 Output

Many neural networks have only one output node. This is not the only possible
structure. As we will see in subsequent chapters, it is possible to have multiple output
nodes and even output nodes that feed into other types of decision-making strategies,
such as symbolic reasoning.

1.7 SUMMARY

In this chapter we have reviewed some of the components of biological nervous sys-
tems that are important contributors to the foundations of artificial neural networks.
In addition to these biological precursors, the most important technical precursor to
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neural networks, pattern classification, which was used successfully for many years in
design of medical decision-making aids, was summarized. In the subsequent chapters
of Part I, we review pattern classification in more depth, along with different types of
neural networks and corresponding learning algorithms as well as their uses in bio-
medical problem solving.

EXERCISES

1. What is the main reason that the neural network approach introduced in the late
1950s was abandoned for over twenty years?

2. In what ways do neural network models correspond to biological nervous systems?
Can you list aspects of biological nervous systems that have not been incorporated
into neural networks?

3. Explain why the two-layer neural networks of the 1950s and 1960s could not solve the
exclusive OR problem.

4. Inthe example based on Table 1.1, we computed the weighting factors for the first four
passes. Complete this calculation, stopping when all four vectors in the training set
have been classified correctly. Check to make sure that your weights agree with those
given in the text.

5. Substitute the remainder of the vectors in Table 1.1 into Eq. (1.5). How many of them
are correctly classified? Does this correspond to the geometrical results in Figure 1.7?

6. Repeat exercise 4, but change the order of the vectors in your training set to X, X;, Xz,
X7. Do you get the same values for w; and w,?

7. If you add a third variable, the linear separator is no longer a line. What is it? What
happens for four or more variables? Can the same approach be utilized?

8. Devise an alternative strategy for determining a decision surface if the two groups are
not linearly separable.

9. What happens if the classification problem has more than two classes? For example,
assume the three possibilities are angina, MI, and congestive heart failure. Is it possi-
ble to use a perceptron-type model to solve this problem?

10. Formulate mathematically the perceptron approach for four variables: white blood
count, systolic blood pressure, diastolic blood pressure, and pH of the blood.
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Classes
of Neural Networks

2.1 BASIC NETWORK PROPERTIES

In the design of neural networks, several aspects are important, notably:

Structure of Networks
Number of layers
Connectivity of nodes
Properties of Nodes
The activation range for each node
The activation or transfer function
Algorithm Design
Weight initialization process
Formula for calculating activation
Learning method

The examples given in this chapter show some of the variations in these factors.
2.1.1 Terminology

Vectors are denoted in boldface; for example, x = (x1,x5, . . ., x,) IS a vector
with n components. In general, each component of an input vector is represented by
one input node. Weights that connect node i to node j are designated by w;;. Matrices
are designated by boldface capital letters; for example, W represents a weight matrix if
the dimensions are clear from the context; if not, W,,,,, designates an »n by m matrix.

2.1.2 Structure of Networks

Networks differ in the number of layers that are included. As we saw earlier, the
first neural networks had only two layers, and so their capabilities were limited. Most
current neural networks consist of three layers: input, hidden, and output. Although

29
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some networks may include additional layers, it can be shown that the three-layer net-
work can perform all functions of networks with more layers, but in some cases not as
efficiently.

A fully connected network means that all nodes are connected to all other nodes.
Feed-forward networks have connections that point from input nodes to output nodes.
Recurrent networks have some type of feedback connections (from output to hidden
layer, for example). If a network is symmetric, then reverse connections are equal to
forward connections, that is,

Wi]' = Wji-
2.1.3 Computational Properties of Nodes

A node is the representation of the biological neuron, and in some publications,
the terms neuron and node are used interchangeably. The activation range of a node
indicates the values that it can assume. In some networks, the nodes may be binary with
the only allowable values being O or 1. In some binary systems, the allowable values are
—1 and 1 instead of 0 and 1. This representation is normally termed bipolar. An acti-
vation level can also be continuous on the unit interval [0, 1] or can assume unre-
stricted continuous values.

Figure 2.1 shows a typical computational structure for a node in a network. In
general, input values are summed in the node. The result may then be adjusted by some
offset 0 that varies depending on the design of the network. The output is then deter-
mined using the adjusted summation as the argument in a function f. (Choices for f are
discussed later in this chapter.) The general equation is

y=1( > v - o) @1)

X

Input » (Output)

Xn

Figure 2.1 Computational Structure of a Node.

where the node has n inputs, w; is the weight associated with the ith input, 9 is the off-
set or internal threshold value, and fis defined by the algorithm. Some common defi-
nitions for f are illustrated in Figure 2.2 (Lau, 1992). Specific examples of the applica-
tion of these functions are seen in the approaches illustrated in the following sections.
These functions are called activation functions or transfer functions. For some algo-
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Figure 2.2 Examples of Functional Nonlinearities.

rithms, specific mathematical conditions apply, for example, differentiability. In some
instances, linear activation functions are also used.

2.1.4 Algorithm Design

Neural networks can be classified in a number of ways depending on structure,
function, or objective. A functional classification given by Fu (1994) divides neural net-
works into the following categories according to their functional properties.

Classification Models: Classification models assign input data items to two or
more categories. These models may use supervised learning in which the cate-
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gories are known or unsupervised learning in which the categories may not be
known.

Association Models: The two types of association models are auto-association,
which focuses on the retrieval of an object based on part of the object itself; and
hetero-association, which focuses on the retrieval of an object in one set using an
object in a different set.

Optimization: The objective of these systems is to find the best solution by mini-
mizing a cost function or other measure.

Self-Organization: This approach organizes information using adaptive learning

facilities. It is similar to clustering algorithms, based on unsupervised learning
techniques.

2.2 CLASSIFICATION MODELS

The most common application of neural networks in biomedical engineering is in clas-
sification problems. We saw this type of application in the previous chapter when we
looked at early neural network approaches, specifically the perceptron, as well as other
pattern classification approaches. Although the initial perceptron had several limita-
tions that restricted its usefulness, multilayer nonlinear perceptron models have been
developed that remove these limitations.

Classification models may be based on neural networks that use supervised
learning in which data of known classification are used as a training set to develop a
decision surface that can be used later to classify new data items. As will be shown in
Chapter 4, there are numerous supervised learning approaches that differ in both the-
ory and application. In addition to the perceptron, supervised learning neural networks
include backpropagation, ADALINE (ADAptive LINear Element), potential func-
tions, and min-max networks (which is discussed along with fuzzy approaches in Chap-
ter 16).

Another type of classification model that uses unsupervised learning techniques
relies on data for which the classification of each case is unknown. These methods
search for patterns in the data by which each case can be classified and are often re-
ferred to as clustering. The data are clustered into groups that contain similar cases, in
which similarity is determined by one of a variety of measures. Unsupervised learning
approaches include Kohonen networks, competitive learning, adaptive resonance the-
ory (ART), and Hebbian learning (see Chapter S).

Most of the biomedical examples illustrated in this book can be categorized as
classification networks, both supervised and unsupervised. Classification networks of-
fer strong techniques for developing decision-making models. These applications are
treated in detail in subsequent chapters. In order to give the reader a broad view of the
field of neural networks, other types of models and their applications are summarized
in the remainder of this chapter.

2.3 ASSOCIATION MODELS

Association models have applications in computer storage problems and communica-
tions problems and in general have binary input. These networks can deal with other
types of input if it is first converted into a binary format. As mentioned in Chapter 1,
many of these networks use a threshold approach.
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2.3.1 Hopfield Nets

In 1982, John Hopfield of the California Institute of Technology designed a new
type of neural network that was one of the first steps in reviving the neural network
methodology that had been essentially dormant for the previous fifteen years (Hop-
field and Tank, 1986). The Hopfield network is useful for both auto-association and op-
timization tasks.

2.3.1.1 Theoretical Basis. The Hopfield net utilizes the concept of surface
minimization in physics and consists of a set of interconnected nodes. Each node, or
neuron, in the network is binary-valued, traditionally assuming the values of —1 or 1.
Each node is connected to every other node but not to itself. The result is n(n — 1) con-
nections for n nodes. A diagram of the Hopfield network is shown in Figure 2.3. The
main idea is that a single network can store multiple stable states.

In the Hopfield net all weights are symmetric, w; = w;;. The network can assume
a set of stable weights so that when a neuron acts on its neighbors the values of the
neuron do not change. For a given input pattern, the network can converge to the sta-
ble state nearest to that pattern. The network is presented with examples called probe
vectors that are binary-valued. The vectors in the network that are used for compari-
son are called exemplar patterns.

Output

Input

Figure 2.3 Hopfield Network.

Hopfield Algorithm for Auto-Association
Assign Connection Weights

Wy = ; Xis Xjs i#j (22)

for a network that stores m patterns, where Wy is the connection weight from unit i
to unit j and X is the ith component in the pattern vector (exemplar).

Initialize
For an input vector x;

#i(0) = %y
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where u;(0) is the activation level of unit j at time t = 0 and X; is the jth component
of the input pattern.

Iterate until Convergence

At time t
wi(t + 1) = F( X wy pi(t)) (2:3)
where
1 y>0
F(y) =| 1 y<?0

Mi(t) (unchanged) y=20

Repeat until the activation levels of nodes remain unchanged with further itera-
tions. The pattern of activation upon equilibrium represents the stored pattern that
best matches the unknown pattern. Note that F is an example of a hard-limited
function as illustrated in Figure 2.2.

EXAMPLE
Consider the following example from Fu (1994):
Use the outer product to construct the initial weight matrix:

W= Z x"x; ~ I) (24)

where x; is the n-dimensional bipolar vector to be stored and I, is the nxn identity matrix.
Define three vectors

X; = (1, "1, —1)
X = (_1, 1, —1)
x;=(-1,-1,1)
Thus
0 -1 -1
W=1-1 0 -1
—1 -1 0

Then use x; as the input vector (also known as the probe vector):
F(x,W) =FJ[2,0,0] = [1, -1, —1]

which is the vector x;. In other cases, more than one iteration may be necessary.

2.3.2 Other Associative Memory Approaches

The bidirectional associative memory (BAM) (Kosko, 1988; Freeman and Ska-
pura, 1992) can relate an input vector to another vector and can generalize over simi-
lar inputs. There are a number of variations on the BAM algorithm, including the
ABAM (adaptive bidirectional associative memory), which can accept continuous
rather than binary inputs (Kosko, 1987).

2.3.2.1 Theoretical Basis of Bidirectional Associative Memory (BAM). The
BAM network associates pairs of vectors such that when vector a; is input to the
network it recalls vector b, The BAM network is shown in Figure 2.4. The back-
ward weight is the transpose of the forward weight, making this a symmetric network.
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Figure 2.4 The Bidirectional Associative Memory (BAM).

BAM Algorithm
Assign Connection Weights
Forward Weights

w =kz X! Yk (2.5)
=1

for a network that stores m patterns, where W is the connection weight matrix and
patterns Xy and yy form an association pair.

Backward Weights

Wit = Wj
Initialize
For an input vector x;

ui(0) = X;

where p;(0) is the activation level of unit j at time t = 0 and X; is the jth component
of the input pattern.

Iterate until Convergence

At timet
pi(t + 1) = F( 2wy pi(t) (2.6)
where F is a hard-limiting function
1 y>0
F(y) = | y<9

ui(t) (unchanged) y=20

(A sigmoid function may be used instead of the hard-limiting function.)

Repeat until the activation levels of nodes remain unchanged with further itera-
tions. The pattern of activation upon equilibrium represents the stored pattern as-
sociated with the input pattern.
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EXAMPLE
Consider the following example for the six binary vectors:
a,=(10101) b;=(1110)
a,=(00111) b,=(1101)
a3 =(11001) b;=(1100)
The bipolar versions of these vectors are:
x;=(1-11~-11) yi=(111-1)
x=(-1-1111) y2=(11-11)
x3={(11-1-11) y:=(11-1-1)

The weight matrix is then constructed by
n
wy=2 %'y
k=1

The result produces a 5 X 4 weight matrix. The construction of the weight matrix is left as an
exercise.

2.3.3 Hamming Net

2.3.3.1 Theoretical Basis. A method similar to the Hopfield network that op-
erates on binary input and has applications in communication theory is the Hamming
network (Lau, 1992). This network uses the optimum minimum error classifier for this
situation that selects the minimum Hamming distance. The Hamming distance is the
number of bits in the input that do not match the exemplar. For example, given the two
vectors:

x;:=(0,1,1,1,0,0,1)

x: = (0,1,0,1,0,0,1)
the Hamming distance between the two is 1. A diagram of the Hamming net is shown
in Figure 2.5.

Hamming Algorithm
Assign Connection Weights

Wy = xis/2 91 =n/2

I=j=nl=<j=m
In the upper subset

wij = 1, k=1
—& k#1l e<I/m

for a network that stores m patterns, where w; is the connection weight from unit 1

to unit j and 0; is the threshold for that node. x;, is the ith component in the pattern
vector Xs. All thresholds in the upper quadrant are zero.

Initialize
For an input vector x;



Section 2.3 m Association Models 37

Output

Picks Maximum
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X X3 X3 X,

Input (Applied at 1= 0)

Figure 2.5 The Hamming Net.

where u;(0) is the output (or activation) level of unit j in the upper subnet at time
0, x; is the ith component of the input pattern, and F is the threshold logic nonlin-
earity from Figure 2.2.
Iterate until Convergence
At time t
wift + 1) = F(us(t) — & T uift))
k#j (2.8)
I=kj=m

This process is repeated until convergence when the output of only one node is
positive.

2.3.4 Applications of Association Models

As mentioned earlier, the initial application of association models was computer
storage. These models have also been used in communications involving data transfers.
In auto-associative procedures, an input vector that is like a sample vector a will recall
the stored vector a and will also recall itself. The auto-associative approach is seen in
the generation of the weight matrix that is derived from exemplar vectors multiplied
by their transposes. In auto-association as illustrated above in the Hopfield net, a mem-
ory can be completed or corrected upon retrieval by self-association if given a partial
or corrupted input. The Hopfield net suffers from a number of problems, including a
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tendency to converge to local minima and limited network capacity. The BAM ap-
proach is similar to the Hopfield net, but unlike the Hopfield net, the BAM network
generates matrices that are not necessarily square.

The Hamming net is an example of a maximum likelihood classifier. It imple-
ments the optimum random minimum error classifier when bit errors are random and
independent; thus its performance is always as good as or better than the Hopfield net
when used as an optimizer. (Minimum error classification methods are discussed in
Chapter 4.)

2.4 OPTIMIZATION MODELS

Neural networks are useful for solving optimization problems that cannot easily be
solved by algorithmic means. An optimization problem consists of finding the best so-
lution given a set of constraints. The variables are encoded as input vectors, and the
constraints are represented by weights connecting the nodes, which may be positive or
negative. An energy function is compared to a function derived from problem con-
straints in order to adjust the weights. The Hopfield net, discussed earlier as an auto-
associative network, can also be used for optimization problems.

2.4.1 Hopfield Net

The Hopfield algorithm must be modified slightly when used as an optimization
method. The energy function of the Hopfield net is a Lyapunov function, which be-
comes smaller for any change in the state of the network until a stable state is reached.
A Lyapunov function exists for all feedback networks and provides a characteristic
that is equivalent to energy, hence the name “energy function.” In the energy model,
any stable state represents a potential well. An input vector represents an initial con-
dition that will lead to the selection of a potential well (Chester, 1993).

Hopfield Algorithm for Optimization

The Hopfield algorithm is modified in the following manner for optimization
problems:

Assign Connection Weights
Determine an energy function Ec based on the constraints of the problem.
Compare the function with the energy function of the Hopfield net based on:

B = =700 > Wiy pa gy = 3 L s+ 6 g @9)
i 1 !

which is a Lyapunov function, discussed below. By is the network energy, 1, is the
external input to node i, and 8; is the threshold for node i.

Initialize
#i(0) = small randomized value
Iterate until Convergence

At time t
Mt + 1) = F(X wy uit) + 1;) (2.10)
where
1 y > 6;
F(y) = -1 y <6

M;i(t) (unchanged) y=6;
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Repeat until the activation levels of nodes remain unchanged with further itera-
tions. The pattern of activations represents the optimized solution.

EXAMPLE

Hopfield and Tank (1985) applied the Hopfield net to the traveling salesman problem (TSP). An
n-city TSP requires an array of #° nodes. Each row in the matrix represents a single city, and each
column represents the order in which that city is visited. A five-city visit for cities A, B, C,D,E
in which the order of the visits was C, A, E, D, B is represented by

1 2 3 4 5
A 0 1 0 0 0
B 0 0 0 0 1
C 1 0 0 0 0
D 0 0 0 1 0
E 0 0 1 0 0

Hopfield and Tank designed an energy function that restricted the network into one active neu-
ron for each column and each row that was also proportional to the sum of the distances be-
tween cities. The general idea is to minimize the sum of the distances. For the ten-city case, for
which there are more than 180,000 paths, the network chose one of the two shortest possible
paths. However, the approach breaks down if the number of cities exceeds 30.

The Hopfield net has stability problems that are better addressed by Boltzmann machines.

2.4.2 Boltzmann Machines

In Boltzmann machines, local minima are avoided by adding some randomness
to the energy function. The binary states of the neurons are updated by stochastic means.

2.4.2.1 Theoretical Basis. The basis for this approach was molecular physics
in which the Boltzmann distribution provides the probability density function for the
kinetic energy of particles in a gas of absolute temperature T.The probability that any
given particle has an energy between E and E + AE is proportional to e E*TJE where
k is the Boltzmann constant. The assumption (Hinton and Sejnowski, 1986) is that in a
fully connect Hopfield-type binary network (states O and 1) the kth neuron has a prob-
ability py of being in the on state (activation is 1), where

pi = 1/(1 + e AEKT) (2.11)

where AE, is the energy gap between the on and off states of the neuron and T is anal-
ogous to the system temperature. The network’s global energy is
z wij x,-xj (212)
i<
where x; is the ith binary nodal signal and w;; is the weight connection from node i to
node j. At thermal equilibrium, the probability of each state is constant and corre-
sponds to the Boltzmann distribution

P4/Pg = e~ (Ea=En)T (2.13)

with the probability of the ratio of any two states depending on the difference in en-
ergy.

Boltzmann Algorithm
Assign Connection Weights
Same as Hopfield optimization net
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Initialize

Select an initial temperature.

Iterate until Convergence

Calculate the probability that unit i is active:

P; = I/(1 + e 4&/T) (2.14)

where AE; is the total input energy received by unit i.
The weights are calculated by

AWij =& (Pij+ - Pij—) (215)

Repeat until thermal equilibrium is achieved. The pattern of activation represents
the optimized solution.

2.4.3 Applications of Optimization Models

As we saw in the example of the traveling salesman problem, optimization meth-
ods can be used in problems that cannot be solved using the algorithmic approach. Ap-
plications in this category include problems that are described by means of constraints
for which a unique solution does not exist. In general, they involve tradeoffs among the
variables to achieve the best overall solution in terms of an optimization function. The
objective in the traveling salesman problem was to minimize the distance. In a prob-
lem involving the development of a medical protocol, the objective may be to minimize
patient risk. (Additional optimization approaches will be discussed in Chapter 5.)

2.5 SELF-ORGANIZATION MODELS

Self-organization models are networks that can organize themselves without knowing
the correct classification of input patterns and thus fall into the category of unsuper-
vised learning. Some examples of self-organization models are Kohonen networks,
competitive learning, Hebbian learning, and adaptive resonance theory (ART). These
systems are discussed in detail in Chapter 5 as examples of unsupervised learning.

In 1981 Kohonen (1988) demonstrated the feasibility of the concept that systems
could organize data without being taught. Since that time, a number of extensions to
the initial concept have evolved. Figure 2.6 shows a two-layer network with n input
nodes (corresponding to the dimensionality of the input vectors) and m output nodes
corresponding to the m decision regions. Every input node is connected to every out-
put node. The connections from input node i to output node j is w;;. The information
can be arranged in an n by m matrix in which each row represents input nodes and
columns represent output nodes. The matrix elements are the corresponding weights.
The ith column in the matrix represents the set of synaptic input weights leading to the
ith output node.

Initial weights are chosen randomly. The organization process begins with the de-
termination of the similarity of an input vector to representation of each category. A
number of methods exist. A distance measure, such as the Euclidean distance, can be
computed between the input vector and the other vectors for each of the m output
nodes. Alternatively, the dot product could be used. A winner among the vectors rep-
resented by the columns in the matrix is selected according to the calculation showing
to which vector the input is most similar.

Assume we are using the dot product. Each node computes the dot product of its
weight vector and the input vector

n; =XWw (2.16)
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Figure 2.6 Kohonen’s Self-Organizing Network.

where n; is the activation of unit /, x is the input vector, and w; is the weight vector for
unit {, the ith column of the matrix. In matrix notation

N = XW (2.17)

Only the node with the maximum activation (the largest dot product) will produce an
output (equal to 1). This process is similar to the k-means clustering algorithm (see
Chapter 5). The network learns by adjusting weights according to

w(t + 1) = w(t) + n(x — w(?)) (2.18)

where 7 is the learning rate. Kohonen learning makes the winning weight vector closer
to the input vector.

Other self-organization models have been developed by a number of researchers
including Carpenter and Grossberg (1986). The work by Hebb (1949) forms the basis
for this type of learning. Chapter 5 presents additional algorithms pertaining to these
approaches, along with biomedical applications.

There are many applications of self-organization models in biomedicine, includ-
ing problems involving data analysis when nothing is known about either the number
of categories present or the correct classification of each case, or both. (These topics
are addressed in detail in Chapter 5.)

2.6 RADIAL BASIS FUNCTIONS (RBF)

Radial basis functions (RBF) utilize a combination of supervised and unsupervised
learning techniques (Moody and Darken, 1989). The network consists of an input layer,
a hidden layer, and an output layer as shown in Figure 2.7.

2.6.1 Theoretical Basis

Learning in the hidden layer is unsupervised with methods such as k-means clus-
tering (Duda and Hart, 1973). Learning in the output layer is supervised and uses a
least mean squares type of algorithm (see Chapter 4). After an initial solution is found,
it is optimized through a supervised learning method.
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Output Layer

Hidden Layer

(Gaussian Basis Functions)

Input Layer

Figure 2.7 Radial Basis Function Network.

Each unit in the hidden layer has a localized receptive field usually represented
by a Gaussian function:

wi = expl-(x — w):(x — w;)/20/’] (2.19)

where x is the input vector, w; is the weight vector for hidden unit i, and o is the nor-
malization factor. The activation level of the output unit is

B = Wit (2.20)
where w;; is the weight from hidden unit i to output unit j.

Radial Basis (RBF) Algorithm

Assign Connection Weights

Output layer weights assigned to small random numbers.
Initialize

Hidden layer weights determined through clustering.
Iterate until Convergence

For the output layer

Wij(t + 1) = le(t) + AWij (221)

where

Awy; = n dip;
where m is the learning rate, and

8 =Ti —
where T is the target output activation and p; is the actual output activation at
unit i.
Repeat until convergence.
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2.6.2 Applications of Radial Basis Functions

The radial basis approach can be used for modeling and classification, and it is
also useful in dimensionality reduction. An application to neurobiological data is given
in Poggio and Girosi (1990).

2.7 SUMMARY

We have seen examples of the major categories of neural networks: classification, as-
sociation, optimization, self-organization, and radial basis functions, along with corre-
sponding learning algorithms. The most relevant of these for the design of computer-
assisted support systems in biomedicine are classification and self-organization net-
works. The other techniques discussed here have, however, been used in biomedical
problems. The researcher needs to keep an open mind regarding the availability of all
these techniques to permit the development of innovative approaches to computer-
assisted support systems.

EXERCISES

1. For the diagram in Figure 2.1, assume that you have the following input to the node
with the weights indicated:

Input values: 1 -1 -1 1
Weights: S5 3 2 1

The internal threshold value is .2. Compute the output value for each of the functions
given in Figure 2.2.

2. Re-do the example for the associative Hopfield net given in the text but replace the
bipolar vectors with binary vectors (e.g., x; = (0 0 1)). Does this change the outcome?
Do you need to adjust the functions in Figure 2.2?

3. For the BAM algorithm, compute the weight vector from the information given in the
text. What is the result when you present the vectors a; and b,?

4. Set up the problem definition for a traveling salesman problem with three cities. Design
an energy function that meets the specified requirements.

5. What is the major difference between Boltzmann machines and the other optimization
models? What types of problems are better suited to Boltzmann machines?

6. Self-organization models rely on unsupervised learning. Give a detailed example of a
biomedical problem that would best be solved by an unsupervised learning approach.
Define input variables for this application.
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Classification Networks
and Learning

3.1 NETWORK STRUCTURE

In this chapter, we will discuss neural network classification systems in which data vec-
tors are to be assigned to categories based on their values. The system may divide data
into two categories or multiple categories.

3.1.1 Layer Definition

For the purpose of the discussion, we will make a number of simplifying assump-
tions and will use vector notation to represent feature vectors and nodes in each layer.
We will assume a three-layer network.

3.1.2 Input Layer

The input layer consists of # nodes, ny, 5, . . ., n, where each node represents
each input variable in a 1-to-1 mapping. This is not the only possible configuration. For
example, if binary nodes are used, several may be required to represent each variable.
We will, however, assume the straightforward 1-to-1 mapping here.

3.1.3 Hidden Layer

The hidden, or interactive layer, consists of interaction of nodes from the input
layer. The learning algorithm determines the exact configuration. For purposes of this
discussion we will assume m nodes, iy, iz, . . ., in.

3.1.4 Output Layer

The output layer represents the classification phase. If it is a two-category prob-
lem, the output layer will have two nodes. Another possibility is to have one output
node that fires if the condition is present and does not fire if it is not present. For mul-

45
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Figure 3.1 Three-Layer Classification Neural Network.

tiple category problems, more output nodes are required. The output nodes will be des-
ignated 01,0;, . . ., 0. In the case of the possibility of concurrent diseases, more than
one of the output nodes may fire. For networks designed for differential diagnosis, rel-
ative strengths of the firings may be considered. Figure 3.1 shows a neural network
with this general configuration.

3.2 FEATURE SELECTION

Feature extraction is a process through which input variables are selected for the de-
sign of a neural network. Feature selection is the same regardless of whether the learn-
ing is supervised or unsupervised. Feature extraction represents the first step in the
process.

3.2.1 Types of Variables

First, it must be determined what type of variables can be represented in the
nodes in the input layer. As we saw in the last chapter, some networks accept only bi-
nary input. Although any number can be represented as a binary number, this is not an
efficient way to design a system if most variables are in fact continuous.

3.2.2 Feature Vectors

A feature vector x consists of n components, denoted x4, x5, . . .,x,. Each x; rep-
resents a variable that is relevant to the classification problem.

An example of a feature vector for the classification of exercise testing data use-
ful for determining presence of coronary artery disease is:

x1: Resting systolic blood pressure
x,: Resting diastolic blood pressure
x3: Resting heart rate
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x4 Maximum ST depression

x5. Heart rate at end of test

x¢ Systolic blood pressure at end of test
x7: Diastolic blood pressure at end of test

In this example, the first three variables assume integer values, the fourth assumes con-
tinuous values, and the last three are A variables that represent changes over time. The
ST depression is a variation of the normal electrocardiogram (ECG) pattern. (Refer to
Figure O4.)

The important aspect of feature extraction is to enumerate all possible variables
that may be useful in the classification process. If features are included which turn out
to be unimportant, their weights will approach zero in the learning process. Thus it is
better to err on the side of including too many variables. The number of variables that
are feasible to include is limited, however, by the amount of data available for training,
for roughly ten cases are needed for every variable that is included.

The variables shown in the preceding example are all clinical parameters. Many
other possibilities exist, such as patient history, family history, and imaging and time se-
ries data, including ECG. These last two categories are discussed in the next two sub-
sections. Some variables may be categorical. In most learning algorithms, categorical
variables must be ordered. For example, if the categorical variable represents type of
heart medication, there will be no inherent ordering from bad to good, lesser to greater,
and so on. However, this information may be used if each medication is included as a
separate binary variable that indicates whether or not the patient takes that medica-
tion. In general, this approach must be used for all nonordered categorical variables.

3.2.3 Image Data

Image data present additional difficulties. Some of the classic problems in pattern
recognition have dealt with the recognition and classification of images. Feature ex-
traction in images consists of identifying some aspect of an image that allows it to be
recognized. In complex images, this phase can be quite involved. A large body of liter-
ature exists in this area (Duda and Hart, 1973), but the problem remains partially un-
solved. For medical images, many approaches have been tried (Vannier, Yates, and
Whitestone, 1992). For analysis of some images, for example, images of the head, sym-
metry is often a useful feature, with asymmetrical findings indicators of disease. Figure
3.2 shows a CT (computed tomography) scan of the head of a patient with a possible
tumor. Notice the asymmetry in the image. Other potentially useful features are
changes in gray levels, areas with irregular borders, and changes from previous images
of the same patient. As in all feature extraction, the selection of image features will be
influenced by the goal of the classification system.

3.2.4 Time Series Data

Time series data can be considered in two categories: those with built-in patterns
(e.g., ECGs) and those without built-in patterns (e.g., EEGs). Automatic analysis of
ECGs is largely dependent on variations from the normal QRS complex previously il-
lustrated in Figure O.4 in the Overview. In the preceding example, the maximum ST
depression is a feature extracted from the QRS complex of the ECG (Cohen, Hudson,
and Deedwania, 1985). Other aspects of the ECG, such as heart rate and R-R interval
fluctuations, may also be important features, as we will see in Chapter 18 in the chaotic
analysis of the ECG (Cohen, Hudson, and Deedwania, 1996).
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Figure 3.2 CT Scan of Head of Patient with Tumor.

For time series without patterns, feature extraction becomes even more difficult.
In the EEG, spikes are important for determining brain activity. Both the frequency of
occurrence and the magnitude of spikes may represent important clues. Additional
complications with EEGs is the large number of channels recorded (up to 22), result-
ing in very large data sets. Work is continuing on the development of techniques for
EEG analysis (Freeman, 1987; Kalayci and Ozdamar, 1995; Leuchter et al., 1993; Mpit-
sos et al., 1988; Petit et al., 1993; Pritchard et al., 1994; Woyshville and Calabrese, 1994).

3.2.4.1 Chaotic Analysis of Time Series. Chaos theory, a new area of re-
search that has developed in the last twenty years, has been shown to be especially
promising in the field of cardiology. Chaotic analysis provides a new way of looking at
nonlinear time series data that in general result in systems with intractable mathemat-
ical solutions. Chaotic analysis has been shown to be useful in the analysis of ECGs
(Chialvo and Jalife, 1987; Goldberger, 1989) and, to a more limited extent, in the analy-
sis of EEGs (Freeman, 1987). It is also useful in other medical time series, such as he-
modynamic studies (Cohen, Hudson, and Anderson, 1993).

From the point of view of decision-making systems, the contribution of chaos
theory is a measure of either the presence or absence of chaos in a system or of
the degree of chaos present. There are two approaches to chaotic analysis: graphi-
cal and numerical. Graphical techniques include strange attractors, Poincaré plots,
and second-order difference plots. Numerical techniques include the fractal dimension,
the Lyapunov exponent, and central tendency measure. In Chapter 18, we discuss
second-order difference plots and central tendency measure in terms of a specific hy-
brid system.
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3.2.4.2 Graphical Measures of Chaos

PoiNncARE PLoTs. A Poincaré plot is obtained from a time series by taking the
value of the time series at time n and plotting it against the value at (» — 1). In gen-
eral, nonchaotic systems will have points clustered close together, whereas chaotic sys-
tems will have more dispersed points.

SECOND-ORDER DIFFERENCE PLOTS. A second-order difference plot is similar
to a Poincaré plot except that a,,.; — 4,1 is plotted versus a,,.; — a,,. This results in a
plot that is centered around the origin as shown in Figure 3.3. Again, the relative dis-
persion of points is the relative measure of chaos. This plot is used in computing the
central tendency measure.

Plar far Novcherdic System Pl Jur Chyotle Spanein

Figure 3.3 Second-Order Difference Plots.

STRANGE ATTRACTORS.  Strange attractors, first described by Ruelle and Takens
(1971), are another method for describing chaotic systems. A strange attractor is shown
in Figure 3.4. The basic idea is that a phase state is created in which the state of the
process is represented by a point. The strange attractor then charts this point through
time. Other types of attractors, fixed points and limit cycles, have been used in physics
for some time.

Figure 3.4 A Strange Attractor.

3.2.4.3 Numerical Measures of Chaos

FracTaL DiMEnsioN.  The fractal dimension gives a measure of the degree of
irregularity, or the efficiency of the object in the amount of space that it occupies. For
example, a one-dimensional line occupies no space. But the outline of a Kock curve
that has infinite crowding into a finite space occupies more space than a line but less
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than a two-dimensional form (Gleick, 1987). Mandelbrot (1977) developed a method
of calculating the fractal dimension.

Lvarunov ExpoNeNT. The Lyapunov exponent provides a method for mea-
suring the effects of stretching, contracting, and folding in the phase space of an at-
tractor, which gives a picture of properties that lead to stability or instability (Gleick,
1987).

CENTRAL TENDENCY MEASURE. The central tendency measure (CTM) mea-
sures the degree to which points are clustered around the origin in second-order dif-
ference plots. It is computed by

t—2
n= [Zl 5 (d,.)]/(t ~2) 3.1)
where t

8(d) = 1if [(Gi42 — @is1)* + (@1 — a)*]° <r
0 otherwise

where ¢ is the total number of points in the time series and r is a radius selected by the
user depending on the radius of dispersion of the points. A practical example of this
approach is shown in Chapter 18.

The use of measures of chaos in decision-making systems presupposes that these
measures are different in the diseased state than in the normal state, or that they dif-
fer from one disease to another. Experimental evidence can lend support to these con-
jectures. In the case of the ECG, there is mounting evidence that this is in fact the case
and that these measures can be effective in diagnostic problems (Cohen, Hudson, and
Deedwania, 1996). Numerical measures of chaos can be used directly as input to neural
network models as one or more parameters in the decision-making process. For the
graphical measures, some method of comparison must be established.

3.2.5 Issues of Dimensionality

As we saw in Chapter 1, when we discussed linearly separable models in two di-
mensions, the classes were separated by a line that would generalize to a plane in three
dimensions. After three dimensions, we can no longer visualize the class separation, but
the mathematical concepts generalize, with hyperplanes separating classes in higher di-
mensions. As we will see in the next chapter, many interesting problems are not lin-
early separable but may be separated with higher-order equations. These surfaces in
n-dimensional space are called hypersurfaces. By taking an equation of high enough
order, any two classes can be separated. However, this decision surface will not be use-
ful in classifying new data sets as it is overdetermined. When nonlinear equations are
used, care must be taken to avoid the generation of overdetermined decision surfaces.

Decision surfaces will be represented by D(x) where x is an n-dimensional vec-
tor. If n = 2 and D(x) is linear, then

D(x) = wix; + wox, = wW-x (3.2)
For general n, the linear equation becomes

n
D(x) = Z WiX; = W- X (3.3)
i=1
which is the equation of a hyperplane. In the next chapter we will see a number of ways
of generating equations for nonlinear D(x).
With the increase in the number of variables, and thus the increase in the dimen-
sionality, more cases are needed to train the system. In some approaches, attempts are
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made to reduce the dimensionality by eliminating or combining variables. If a system
of high dimensionality is trained on too few sample cases, the result is a model that pro-
duces poor results when new cases are introduced.

3.3 TYPES OF LEARNING

The basic types of learning undertaken with neural networks are supervised and un-
supervised. We have seen some examples of each. In the next chapter, we will present
details on a number of supervised approaches, with unsupervised approaches treated
in Chapter 5. In the following subsection, we introduce basic concepts that are com-
mon to all approaches. Other nonneural network approaches also use supervised and
unsupervised learning, including pattern recognition (Chapter 1), genetic algorithms
(Chapter 14), Bayesian learning, and discriminant analysis (Chapter 15).

3.3.1 Supervised Learning

Supervised learning is also called learning with a teacher. The network must be
presented with data for which the correct classification is known.

Assume that we define our feature vector, as above, with seven components, and
that the objective is to determine from these seven data items whether or not the pa-
tient has coronary artery disease (CAD). We make the following definition:

If D(x) > 0, the patient has CAD (class 1)
If D(x) < 0, the patient does not have CAD (class 2)
If D(x) = 0, no decision can be made

Assume we have a training set of thirty-five cases, the first two of which are:

x' = (130,100, 98,2.8,102,131,102)  x'isin class 1 (CAD)
x> = (120,77,72,0.0, 110, 160, 90) x° is in class 2 (No CAD)

If we consider the simple linearly separable case, the objective of supervised
learning is to determine the w;’s in Eq. (3.2). This is a straightforward procedure since
we know the following:

1. The values for all x;’s for each vector in the training set
2. The range of appropriate values for D(x) for each vector in the training set

Thus the only unknowns are the w;’s. Remember, however, that we do not have
actual values of D(x), but only boundary conditions. The task of the learning algorithm
is to iteratively adjust the w;’s until all vectors in the training set are correctly classi-
fied. (Methods by which this process can be accomplished are discussed in Chapter 4.)

In most situations, especially in biomedical applications, the classes will not be
linearly separable and higher-order functions must be used.

3.3.1.1 Selection of Training and Test Sets. Generally, a training set is se-
lected randomly from the available data vectors. In order to produce a reliable sepa-
ration, a number of factors must be considered:

1. The training set must be representative of the data set.
2. The training set must be large enough.

3. The training set must not contain vectors that are contradictory, that is, vectors
with identical components that belong to different classes.
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Problems with training of neural networks include:

1. Different weights may be obtained from different training sets.

2. Different weights may be obtained by altering the order in which the vectors
in the training set are presented to the learning algorithm.

A separate set of vectors should be used to test the accuracy of the model once
it is obtained. A number of measures can be used to determine accuracy:

Sensitivity = # classified correctly as positive/# of true positives
Specificity = # classified correctly as negative/# of true negatives
Accuracy = # correctly classified/total number

For example, assume we are trying to classify patients into presence or absence
of CAD, and we have the following distribution in our test sets:

Number of patients with CAD: 56
Number of patients without CAD: 63
Number of patients with CAD classified correctly: 51
Number of patients without CAD classified correctly: 60

We obtain the following measures of accuracy:

Sensitivity = 51/56 = 0.91
Specificity = 60/63 = 0.95
Accuracy = 111/119 = 0.93

In classification problems, if the training set is changed to improve sensitivity, it is of-
ten at the expense of specificity, and vice versa, as a shift in the decision surface may
improve the classification in one category at the expense of the other. Often ROCs
(receiver-operator curves) are used to analyze the balance between sensitivity and
specificity. An ROC curve is shown in Figure 3.5. The y-axis is sensitivity, and the x-axis
is 1 — specificity. The goal is to try to find a combination that is as close as possible to
the upper left-hand corner of the graph.

3.3.1.2 Selection of Learning Algorithm. Selecting an appropriate learning
algorithm depends on the nature of the problem and the type of data involved. Al-
though many learning algorithms may produce results, remember that there is no one
answer in defining classification functions. Some factors to consider are:

1. Convergence properties

2. Stability

3. Accuracy in classifying new cases
4. Ability to interpret results

In the next chapter, we will compare these factors in a number of different learning al-
gorithms.

3.3.2 Unsupervised Learning

In unsupervised learning, also called learning without a teacher, we do not have
the advantage of having data of known classification. We often do not even know how
many categories exist. The general idea behind unsupervised learning is to find a mea-
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Sample Sensitivities and Specificities

Sensitivity Specificity 1-Specificity
x! 0.91 0.95 0.05
x 0.99 0.80 0.20
x* 0.93 0.93 0.07
x* 0.87 0.99 0.01
x® 0.00 1.00 0.00
x® 1.00 0.00 1.00
y
12 ¢
1 7' ® ®
0s !
0.6
04 +
0.2
0 f 1
0 0.2 0.4 0.6 0.8 1 1.2

Figure 3.5 ROC Curve, x: (1 — specificity), y: sensitivity.

sure of similarity that can be used to determine which pattern vectors are “closest”
to other pattern vectors; hence the name “clustering” is often used as the data will
tend to group in natural clusters. This phenomenon is easy to observe in two dimen-
sions by simply plotting the data points to determine if natural clusters are found.
It is even possible in three dimensions if good graphical displays are available. How-
ever, for higher dimensions, an algorithm must be used to detect the multidimensional
clusters.

Consider as an example our two-category problem of presence or absence of
CAD, but for simplicity we will assume we have only the following two variables avail-
able from the exercise treadmill test (ETT): maximum ST depression in millimeters
(ST) and change in systolic blood pressure from the beginning to the end of the test
(ABP). The values are given in Table 3.1. These data are plotted in Figure 3.6. We can
identify two clusters visually. If we did not have the visual aid, that is, if this were a
higher dimensional space, what distance measure, also known as metric, would we use?
The most straightforward is the Euclidean distance

d(x,y) = [(x1 — y1)* + (%2 = y2)*1"? (3.4)
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Table 3.1 Two-Dimensional Vectors for

Identification of CAD
Vector ST Depression ABP
x! 2.5 5
X 0.0 25
x° 0.5 30
x* 2.0 10
x° 1.5 -5
x¢ 1.5 35
x 0.0 50
< 3.0 10
60 -
50 &
40 -
L 2
30 — ¢
& .
20 —
10 -
0 -
0 0.5 1
210 —

ST

Figure 3.6 Plot of Change in Systolic Blood Pressure (BP) versus Maximum
ST Depression (ST).
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where x and y are two-dimensional vectors. Several other distance measures could be
used, including the following:

City Block
d(x,y) = Ix; — y1! + Ixz — yal (3.5)
Maximum Value
d(x,y) = max {Ix; — y1l, Ixy — y»!} (3.6)

We already saw a metric for binary vectors in Chapter 2, the Hamming distance.
A metric must satisfy the following:

1. d(x,y) = 0 and d(x,y) = Oifandonlyifx =y (positivity)
2. d(x,y) = d(y, x) (symmetry)
3. d(x,y) + d(y, z) = d(x,z) (triangle inequality)

These definitions are easily extended to vectors of any dimension. In Chapter 5, we will
analyze a number of approaches that use these and other metrics and that also use dif-
ferent approaches for classifying data.

The choice of a suitable metric is not always straightforward. Some metrics are
better suited to the data set than others. For example, the Euclidean distance gives the
shortest geometrical distance between two points, the city block distance gives the dis-
tance between two points following a right-angle-only path, and the maximum value
distance measures the distance between the two vector components that are furthest
removed from each other. Another factor to consider is that scaling of the data can re-
sult in entirely different clusters than the original data set.

3.3.3 Causal Models

Causal models imply that a cause and ef