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Preface 

The purpose of this book is to cover a broad range of topics relevant to computer-
assisted techniques for biomedical decision making. The book consists of three parts: 
neural networks, artificial intelligence, and alternative approaches. Part I provides a 
basis for understanding the theoretical and practical approaches to the development of 
neural network models and their implementation in modeling biological systems. At 
each stage, theoretical techniques are presented, followed by algorithmic development 
and application to specific problems in biomedicine. The objective is to allow the 
reader to see how each technique works in practice. A broad range of neural network 
techniques and learning algorithms are discussed. At the end of Part I, comparative 
analyses of different approaches are given. Part II addresses topics in artificial 
intelligence and their applicability to problems in biomedicine. Topics include 
knowledge-based acquisition and representation, knowledge-based systems, and 
searching strategies. Part III deals with other methodologies, including genetic 
algorithms, probabilistic systems, fuzzy systems, and hybrid systems in which two or 
more techniques are combined. The concluding chapters include a case study, analysis 
of the symbolic versus the numerical approach, and future perspectives. The exercises 
range from straightforward problems that measure comprehension of basic concepts 
to more challenging problems that permit the development of practical models using 
the theoretical techniques. In addition to the exercises in the book, problems related to 
each chapter in the text that can be solved using the MATLAB software package are 
available by FTP. If you have web access, use ftp://ftp.ieee.org/uploads/press/Hudson. 
If you are using an ftp command, 

ftp ftp.ieee.org 
login: anonymous 
password: (your email address) 
cd uploads/press/Hudson. 
Although a number of published texts describe decision-making strategies, this 

book focuses on the use of these methods in conjunction with medical and biological 
data and the unique problems they pose. The book is intended for upper division or 

xxi 
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graduate students in medical informatics, biomedical engineering, and allied fields, as 
well as for researchers who require an up-to-date and broad-based overview of the 
field. Extensive references are included to relevant literature, allowing the student or 
researcher to investigate specific topics in depth. 

This book can be used in a number of ways for different course structures. Part 
I can be used on its own for a one-quarter graduate or one-semester undergraduate 
course on neural networks. Part II can be used similarly for an artificial intelligence 
course. The entire book is appropriate for a full-year (three-quarter or two-semester) 
graduate course on decision-support strategies at an upper division or graduate 
level. For a general one-quarter or one-semester overview course, topics can be 
selected from each section. A sample course could include Part I: Overview, Chapters 
1-3; Part II: Chapters 9-10; and Part III: Chapters 14-17. In addition, within each 
chapter, depending on the level of sophistication, the mathematical treatment and 
algorithm development can initially be omitted. 

The book is intended to give a broad overview of the complex area of decision-
support systems and their uses in medicine and biology. It contains sufficient 
theoretical material to provide a deep understanding of the techniques involved. For 
researchers in the field, the book is an important tool for initiating in-depth studies on 
specific topics, hopefully producing new and interesting theoretical and practical 
developments. 

Donna L. Hudson 
Maurice E. Cohen 
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Overview 

0.1 EARLY BIOMEDICAL SYSTEMS 

0.1.1 History 

Since the early 1960s, the computing community has made predictions regarding 
the imminent emergence of powerful systems for dealing with medical and biological 
data, only to be proven wrong. At the same time, many highly successful systems have 
been created in other areas. There are a number of explanations for this lack of success 
in the biomedical area. Early computer programs were successful for well-defined sys-
tems, the extreme case being physical models that are accurately described in mathe-
matical terms, including many problems in engineering and physics. The further away 
the application is from the physical sciences, the less defined the model becomes. 
In general, biomedical systems have some components that are well defined, along 
with numerous others that are only partially understood. Straightforward mathemati-
cal or algorithmic modeling in biomedical systems is only possible for some subsys-
tems. As a result, new techniques need to be developed to deal with biomedical appli-
cations. 

One early approach utilized pattern recognition techniques. Today pattern recog-
nition is more closely associated with image processing, but in the early years, in the 
1960s and 1970s, pattern recognition referred to algorithms that allowed the computer 
to search for data patterns. These patterns could be images or groups of parameters as-
sociated with specific diseases. The latter application now is more commonly called pat-
tern classification, with the term pattern recognition reserved for searching for patterns 
in images. Several successful systems were developed using pattern classification meth-
ods. Early pioneers in this area included de Dombai et al. (1972), Patrick, Stelmock, 
and Shen (1974), Raeside and Chu (1978), Kulikowski (1979), and Cohen, Hudson, and 
Deedwania (1985). 

In the 1970s, spurred by an article by Gorry (1973), interest increased in the po-
tential use of artificial intelligence (AI) techniques in medical systems. AI techniques 
had been under development since the advent of computers (Jackson, 1974). The AI 
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approach became popular because of the drawbacks associated with pattern classifica-
tion. These disadvantages included the seemingly black-box nature of the algorithms 
that provided physicians with only a result, along with the inability of the systems to 
provide explanations for their conclusions. It was felt that the AI approach would al-
low the inclusion of expert input as well as address the above shortcomings. For a 
decade, AI systems in medicine abounded (Miller, 1988), again with limited practical 
results. Although several excellent systems emerged, few were used in practice, includ-
ing the most famous of these systems, MYCIN (Shortliffe, 1976). In the mid-1980s, 
neural network models began to reemerge as an alternative to the AI systems. These 
models had much in common with the early pattern classification systems in that their 
knowledge was derived from data rather than from experts. Chapter 1 gives an 
overview of the historical development of neural networks, and Chapter 9 presents an 
overview of artificial intelligence. 

0.1.2 Medical Records 

In addition to the problems involved in developing appropriate paradigms for 
biomedical systems, another major difficulty centers on the form of the medical record. 
Medical data are inherently complicated because so many diverse components are im-
portant: quantitative test results, analog output such as electrocardiograms and elec-
troencephalograms, pictorial output such as radiographs, computed tomography (CT), 
magnetic resonance imaging (MRI), nuclear medicine scans, and ultrasound, as well as 
handwritten notes. Types of medical data are treated in detail in Section 0.2 of this 
chapter. In addition to the complexity of data types, medical records are traditionally 
handwritten in free form and contain many comments. Specific test results, history, and 
clinical findings are typically found within the written comments. For the last forty 
years, numerous attempts have been made to organize these diverse data types into a 
format that can be easily automated. 

Greenes et al. (1969) at Massachusetts General Hospital did early work in the de-
velopment of the computerized medical record. They developed the computer-based 
medical record system (COSTAR) system, organized as a hierarchical database. 
PROMIS (problem-oriented medical information system), developed at the Univer-
sity of Vermont (Schultz, 1976), focused on the problem of organization of medical 
data, as well as feedback on medical action. Medical information is organized in 
frames. The ARAMIS system (Fries, 1972), developed at Stanford University in the 
1970s, built on some of the ideas in PROMIS but in addition introduced the important 
concept of the time-oriented data record (TOD) to display the progress of a patient 
and to permit the development of causal relationships. The goal of the HELP program 
developed by Warner, Rutherford, and Houtchens (1972) was to assist in medical de-
cision making. The system provided access to raw data, as well as all currently relevant 
decisions previously made on the patient. Miller began development of the MEDUS/A 
system (Ben Bassat et al., 1980) at Harvard in 1977 using frames, as did PROMIS. 
(These systems are discussed in more detail in Chapter 9.) 

Researchers continue to struggle with the problem of computerizing medical 
records. It is a topic of interest at most conferences dealing with computers in medi-
cine. For example, at the 1996 American Medical Informatics Association Fall Sympo-
sium, one of the major topics was the computer-based patient record. New graphical 
techniques allow the inclusion of visual data directly in the patient record. With the ad-
vent of the Internet, new pressure has arisen for standardization of the medical record 
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so that it can be utilized at remote sites. Other advances permit the inclusion of mag-
netic strips on cards so that individuals can carry their medical records with them. New 
technologies have given rise to new issues, including privacy concerns, particularly as 
they relate to the transmission of medical records on the Internet. Recent work is con-
centrating on information sharing, security, standards, and appropriate uses. In many 
locations, however, the paper record remains the primary source of information, espe-
cially for patient history and physical exam parameters. 

0.1.3 Drawbacks of Traditional Approaches 

Strict algorithmic approaches to decision support in medicine have not been suc-
cessful because in most instances complete models that describe biological system 
functioning are not known. The lack of deterministic models was recognized early, 
leading to the development of pattern recognition approaches to address classification 
problems, such as differential diagnosis. These models allowed the computer to search 
for patterns in the data. Approaches based solely on accumulated data present a num-
ber of drawbacks. The most obvious problem is that not only is the model dependent 
on the accuracy of the data, but also it is limited by the applicability of the data to other 
populations. For example, if the data were collected on a male population between the 
ages of 18 and 25, a common occurrence in military hospitals, any models generated 
probably could not be generalized to the population as a whole. This problem plagues 
many medical studies. A study done on heart disease in Finland, which has a largely ho-
mogeneous population, may not apply in the United States, with its extremely diverse 
population. The knowledge-based approach avoids this problem by using expert input 
as its knowledge base. The knowledge-based approach has inherent problems. Using 
only one or a small number of experts as consultants to develop the knowledge base 
may reveal differences of opinion and may produce knowledge bases that are not in 
agreement with other experts. An additional problem with expert-derived knowledge 
bases is the development of methods for incorporating rapidly developing new knowl-
edge. 

0.1.4 Numerical versus Symbolic Approaches 

Experts continue to debate whether the symbolic approach (knowledge-based 
systems using expert input) or the numerical approach (pattern recognition and neural 
networks using data-derived knowledge) is the proper route for accommodating bio-
medical data. Recently, a number of hybrid systems have been developed that take ad-
vantage of both data-derived information and expert-supplied knowledge (Kandel and 
Langholz, 1992; Cohen and Hudson, 1992). These hybrid systems rely on two or more 
techniques that are brought to bear on solving a single problem. (Hybrid systems are 
discussed in Chapters 17 and 18.) 

0.2 MEDICAL AND BIOLOGICAL DATA 

Medical and biological data are inherently complex. In most medical records, a num-
ber of types of data are encountered, including items that describe patient history, 
physical exams, laboratory tests, pathology reports, imaging reports, and electrocardio-
gram reports. The types of data that are present must be examined carefully because 
they influence the kind of analysis that can be done. 
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0.2.1 Binary Data 

Binary data have two possible responses, usually yes/no, but also male/female, 
present/absent, and so on. Binary data usually assume the values 0 and 1. A variation 
on binary data is bipolar data in which the variable can assume the values of - 1 
and 1. 

0.2.2 Categorical Data 

Categorical data have more than two responses. An example would be progres-
sion of severity of symptoms: decrease, no change, increase. A special type of categor-
ical is ordered categorical in which responses can be ranked from worst to best or vice 
versa. An example of a categorical variable is type of cardiac drug taken. Categories 
may assume values such as calcium channel blocker, beta-blocker, and anti-arrhythmic 
agent. The categories are then numerically coded. The progression of symptoms as de-
fined above represents an ordered categorical variable. 

0.2.3 Integer Data 

Examples of integer data include variables such as blood pressure where an in-
herent ordering is present, but only integer rather than real values can be assumed. In 
general, integer data items can be treated the same as continuous data. 

0.2.4 Continuous Data 

Mathematically speaking, continuous data are the best behaved of all data types 
and can be easily manipulated in any type of model. However, a few words of caution 
are due here. In most data, and especially biomedical data, the precision and accuracy 
of the number must be considered. 

0.2.5 Fuzzy Data 

A test result depends on the precision of the instrument. The level of precision 
is usually given in the manual. A hemoglobin level of 14.3 may have a ± 0.1 factor due 
to the precision of the instrument. The number 14.3 is generally used as a crisp num-
ber. An alternative is to define a fuzzy number that attempts to include the 
imprecision information in the model. First we will consider continuous fuzzy data. 
An example of continuous data is a test result or an instrument reading such as 
body temperature or potassium level. A potassium level of 4.2 may have been ob-
tained. However, all instrument readings and test results are subject to some degree 
of uncertainty, it may therefore be more accurate to represent the potassium level to 
be in the interval (4.1,4.3). In other words, it can be considered to be a fuzzy number. 
In the crisp case, this interpretation would degenerate into (4.2,4.2) or just the num-
ber itself. An example of a fuzzy number representing a test result is shown in Figure 
O.l (Hudson and Cohen, 1994). Fuzzy numbers are represented by membership func-
tions that are generally considered to be either triangular or trapezoidal. A triangular 
membership function has only one value with full membership (a value of 1.0). A 
trapezoidal membership function has a range of values with full membership. (Tech-
niques for inclusion of these data in the neural network models are discussed in Chap-
ter 16.) 
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Figure O.l Membership Functions for Fuzzy Numbers for TWo Continuous Vari-

ables: Systolic and Diastolic Blood Pressures. 

A second useful construct involves the idea of a membership function that indi-
cates normal and abnormal ranges of variables. The membership function assigns a 
quantifier to a particular numerical value based on a predefined function. An example 
is given in Figure O.2. 

0.2.6 Temporal Data 

Early computer-aided decision support systems largely ignored temporal data, al-
though temporal information is very important in diagnostic processes. This is true for 
the individual patient record in which changes in laboratory tests, physical findings, and 
medical images can have important implications for identifying disease states and for 
following the progression of disease processes. The failure to include these important 
indicators stemmed from the difficulties they posed in both representation and analy-
sis. In fact, even in database design, temporal data pose special representation prob-
lems, since they are usually open-ended. 

Temporal data can be divided into the following categories, depending on which 
aspects of the data are important (Hudson and Cohen, 1992): 

1. Δ Data: The change in value from the previous recording (example: blood 
pressure). 

μ 
Decreased Normal Increased 

50 100 150 

Systolic Blood Pressure 
mmHg 

Figure OJ2 Membership Function for Ranges of Systolic Blood Pressure. 
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2. Normalized Δ Data: The change in value relative to the time interval (exam-
ple: weight gain or loss/month). 

3. Duration Data: The duration of time for which the finding persisted (example: 
fatigue). 

4. Sequence Data: A particular sequence of events (example: fever occurring be-
fore rash occurring before nausea). 

In later chapters, we will investigate techniques for including temporal data in both 
knowledge-based and neural network systems. 

0.2.7 Time Series Data 

Time series data occur in a number of contexts in biomedical systems. By far 
the most common time series that is used for diagnostic purposes in medicine is the 
electrocardiogram (ECG), an example of which is shown in Figure O.3. The analysis of 
time series is quite complex; accordingly, only a brief summary will be given here. 
Time series can be divided into a number of types. The ECG shown in Figure 0.3 is 
a specific type of time series that contains an inherent pattern, known as the QRS 
complex, associated with each heartbeat. The QRS complex is shown in Figure O.4. 
The existence of this repeated pattern simplifies the analysis of the time series. By 
contrast, the electroencephalogram (EEG) which measures brain waves has no inher-
ent, repetitive pattern, as can be seen in Figure O.5. To complicate matters further, 
both the ECG and EEG are recorded using multiple electrodes, with each lead giving 
a different pattern. The EEG may use as many as twenty-two leads. Other types of 
time series data are also useful in determining biological functions, such as hemody-

Figure 0.3 Example of an Electrocardiogram (ECG). 
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namic studies. Techniques that have recently been shown to be useful in the analysis 
of biological time series include wavelet analysis and chaos theory (Cohen et al, 
1990). (These techniques are discussed in detail in relation to ECG analysis in 
Chapters 3 and 18.) 

0.2.8 Image Data 

One area where computers have scored great success in biomedicine has been 
medical imaging. Probably the greatest medical advance in the late twentieth century 
was the development of CT scanning techniques, which in many instances removed the 
need for exploratory surgery. The same CT techniques that make image reconstruction 
possible using X rays have subsequently been applied to magnetic resonance imaging, 
a more sensitive technique for analysis of soft tissue and for metabolic studies. The re-
cent development of digital radiography is replacing traditional methods of storing 
X-ray film, with direct computer storage providing the ability to transfer images from 
the office to the physician's home or to remote locations. These systems, denoted PACs 
(Picture Archiving and Communications System), are becoming more common (Ratib 
et al., 1992). A number of techniques have also been developed for analysis of images 
that allow for edge detection, image enhancement, and filtering (Cohen and Hudson, 
1988). 

Regardless of the imaging technology, all digitized images use the same general 
format. An image is made up of pixels (picture elements), with the number of pixels 
per row and the number of rows determining the resolution of the image. For example, 
an image that is 512 X 512 has 512 pixels in each row with 512 rows; thus the image 
contains over 250,000 pixels. This explains why images require so much computer stor-
age! The number of gray levels in a black and white image determines the number of 
bits per pixel. If 8 bits are used per pixel, 28 or 256 gray levels can be represented. For 
color images, each bit configuration represents a unique color, so the same 256 combi-
nations can represent 256 colors. If the image is three dimensional, the digital repre-
sentation uses voxels (volume elements) instead of pixels. 

Why have computer-imaging techniques succeeded where computerization of 
other medical information has failed? First, imaging is a well-defined problem. Second, 
the format of computer images is the same regardless of the technology used to cap-
ture the image, whether X rays, ultrasound, magnetic resonance, or nuclear imaging. 
Thus all images can be stored, manipulated, and transferred by the same methods. 
Each image, however, uses a large amount of disk space, and transmission requires 
high bandwidth to achieve acceptable speed. The usefulness of digital imaging is only 
now becoming a reality because computer hardware advances have made it feasible to 
manipulate and transfer images at reasonable speeds. 

0.3 ORGANIZATION OF THE BOOK 

The book is divided into three parts: neural network modeling, artificial intelligence 
approaches, and alternative approaches to the development of biomedical decision 
aids. Each chapter contains relevant references to topics covered in that chapter, but 
the bibliographies are not meant to be exhaustive. The exercises included at the end of 
each chapter range from straightforward problems designed to ensure an understand-
ing of the basic concepts to more complex exercises that can be developed into pro-
jects. 
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Foundations 
of Neural Networks 

1.1 OBJECTIVES OF NEURAL NETWORKS 

Neural network research can be divided into two areas of investigation. The first area, 
the direct problem, employs computer and engineering techniques to model the human 
brain. This type of modeling is used extensively by cognitive scientists (Harley, 1998) 
and can be useful in a number of domains, including neuropsychiatry (Rialle and Stip, 
1994, Ruppin, Reggia, and Horn, 1996), and neurophysiology (Saugstad, 1994). For 
more detailed coverage of the direct problem, the reader should consult MacGregor 
(1987) and Aakerlund and Hemmingsen (1998). 

The second area, the inverse problem, simulates biological structures with the ob-
jective of creating computer or engineering systems. The inverse problem is applied ex-
tensively in building computer-assisted decision aids used in differential diagnosis, 
modeling of disease processes, and construction of more complex biomedical models. 
Part I of this book concentrates mainly on the inverse problem, although the two 
areas cannot be completely separated since one problem often sheds light on the other. 

Neural networks are used to solve problems in which the complete formulation 
is unknown—that is, no causal model or mathematical representation exists, usually 
because the problem itself is not completely understood. The neural network uses data 
to derive patterns that are relevant in differentiating the groups. Neural network mod-
els fall into the category of soft computing, as do fuzzy logic approaches, in that solu-
tions are found to approximate problems rather than approximating solutions of exact 
formulations. 

1.1.1 Modeling Biomedical Systems 

Historically, numerous modeling techniques have been used, including mathe-
matical approaches and simulation. Some of the early systems were quite successful, 
especially in the area of drug therapy. Realistic models for most biological systems are 
still difficult to achieve both because of our limited knowledge and the complexity of 
these systems. Recent approaches have used chaos theory to address nonlinear dy-
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14 Chapter 1 ■ Foundations of Neural Networks 

namics in biological systems. Neural network modeling of biomedical systems com-
prises the direct problem and has resulted in a number of interesting applications in 
which neural network models successfully mimic characteristics of human learning as 
well as providing models of learning disorders. In general, modeling and simulation 
systems are outside the scope of this book with two exceptions: features of neural net-
works relevant to modeling and the use of chaos theory in a hybrid system (illustrated 
in Chapter 18). Modeling using symbolic techniques is considered in Part II of this 
book. 

1.1.2 Establishment of Decision-Making Systems 

The use of neural network models as decision aids comprises the inverse prob-
lem. These systems have their historical foundations in earlier pattern recognition 
techniques and limited neural network models. 

1.2 BIOLOGICAL FOUNDATIONS 
OF NEURAL NETWORKS 

The motivating factor behind neural network modeling was the structure of biological 
nervous systems, or biological neural networks. To draw attention to this parallel, 
neural network models are sometimes referred to as artificial neural networks 
(ANNs). Although some basics are known about biological nervous systems, a great 
deal remains unknown. 

1.2.1 Structure of the Neuron 

Figure 1.1 shows a simple biological cell. A semipermeable membrane that is be-
tween 70 and 100 Angstroms in thickness surrounds the cell. In the interior of the cell, 
components include the nucleus, the mitochondria, and the Golgi bodies. The nucleus 

Figure 1.1 Structure of a Biological Cell. 
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consists of nuclear sap and a nucleoprotein-rich network from which chromosomes 
and nucleoli arise. A nucleolus contains DNA templates for RNA. The mitochondria 
produce energy for the cell through cellular respiration. Golgi bodies are involved in 
the packaging of secretory proteins (Rogers and Kabrisky, 1991). 

Figure 1.2 shows a neuron, which is an extension of the simple cell in that two 
types of appendages have been formed: multiple dendrites and an axon. The dendrites 
receive input from other neurons, whereas the axon is an output channel to other neu-
rons. Note that a neuron still possesses all the internal features of a regular cell as 
shown in Figure 1.1. The neuron has important basis characteristics, and it has a num-
ber of inputs called dendrites and one output called the axon. The cell membrane has 
an electrical resting potential of -70 mV. The resting potential is maintained by pump-
ing positive ions out of the cell. The principal pump is the sodium (Na+) pump. 
The main difference between a neuron and an ordinary cell is that the neuron is ex-

Figure 1Λ Structure of a Neuron. 
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citable. Because of inputs from the dendrites, the cell may become unable to maintain 
the -70 mV resting potential, resulting in an action potential that is a pulse transmit-
ted down the axon. Note that the action potential results only after a certain threshold 
has been exceeded, for example, if the potential is raised above -50 mV. After releas-
ing the pulse, the neuron returns to its resting potential. The action potential causes a 
release of certain biochemical agents known as neurotransmitters that are the means 
by which messages are transmitted to the dendrites of nearby neurons. These neural 
transmitters may have either an excitatory or inhibitory effect on neighboring neurons. 
A number of biochemical transmitters are known, including acetylcholine (usually ex-
citatory), catecholamines, such as dopamine, norepinephrine, and epinephrine, and 
other amino acid derivatives such as histamine, serotonin, glycine, and γ-aminobutyric 
acid (GABA). GABA and glycine are two important inhibitory transmitters (Butter, 
1968). 

1.2.2 Structure of the Central Nervous System 

The puzzle of how individual neurons are organized into complex neuronal struc-
tures has been the subject of a great deal of research over the years. Santiago Ramon 
de Cajal was the first to discover the complex interconnection structure in the cerebral 
cortex summarized in an English translation by DeFelipe and Jones (1988). Along with 
his associate Camillo Golgi (Golgi, 1886) he produced photographs of the structures 
by applying dyes that were absorbed differently. For this work, Cajal and Golgi were 
awarded the 1906 Nobel Prize in medicine. 

Later, in the 1930s, Lorente de No, one of Cajal's students, examined the types of 
neurons in the cerebral cortex showing 32 to 34 different types based on shape classi-
fication, not on function (Asanuma and Wilson, 1979). 

In the 1940s, Hodgkin and Huxley (Hodgkin, 1964; Huxley, 1971) began their 
well-known work on the giant squid, chosen because of its two very large neurons. 
Hodgkin and Huxley were awarded the 1963 Nobel Prize for their investigations into 
threshold, inhibition, and excitation in the giant squid axon. 

Next, Hubel and Wiesel (1962) did extensive investigation into the cerebral cor-
tex of the cat. They mapped many complex structures and tracked the path from the 
optic nerve to the lateral geniculate body to the visual cortex. They found columns of 
cells in the visual cortex that appeared to be responsible for processing various shapes. 
In the process, they distinguished between simple, complex, and hypercomplex cells. 
Their work also emphasized the parallel nature of the visual processing system. Figure 
1.3 shows the optical pathways Hubel and Wiesel mapped out. 

1.3 EARLY NEURAL MODELS 

1.3.1 The McCulloch and Pitts Neuron 

In a 1943 paper, McCulloch and Pitts (1943) presented a two-state logical deci-
sion element model based on a simplified neuron which they used to compute Boolean 
functions. They declared that "neural events and the relationship among them can 
be treated by means of propositional logic" (p. 115). Their artificial neuron per-
formed logical operations on two or more inputs and produced an output if a thresh-
old value was exceeded. This work can be considered the ancestor of artificial neural 
networks. 
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Figure 13 Optical Pathways. 

1.3.2 Hebbian Learning 

In 1949, Donald Hebb (1949) published his approach to learning laws. In his orig-
inal approach, excitatory neuron coupling weights were increased by a subsequent fir-
ing, based on the idea of learning driven by activity. However, weights could only in-
crease. (Many later models were based on this initial work and are discussed in detail 
in Chapter 5.) 

1.3.3 ADALINE 

ADALINE, an acronym for ADAptive LINear Element, was developed by 
Bernard Widrow (Widrow and Steams, 1985). He used the mathematics of adaptive 
signal processing to produce the first commercial neural network. 

1.3.4 Rosenblatt Perceptron 

In the 1950s, Rosenblatt (1962) introduced models of the brain which he called 
perceptrons. Although his representation of artificial neurons was based on the neuron 
models of McCuUoch and Pitts, he departed from their approach by basing his model 
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on probability theory rather than symbolic logic. The photoperceptron as defined by 
Rosenblatt responded to optical patterns, and contained a sensory, an association, and 
a response area (Figure 1.4). The sensory area corresponds to the retinal structure. 
Each point responds to light in an on/off manner; input is then transmitted to the as-
sociation area. The connections have three possible weights: 1 (excitatory),-1 (in-
hibitory), or 0. When a pattern is presented to the sensory area, a unit in the associa-
tion area becomes active providing its value exceeds a predetermined threshold Θ. At 
time t, the output from the association area is defined as 

y(f) = sgnX [*,(') νν,'Ο-θ] (1.1) 

where sgn is either +1 (for positive argument) or - 1 (for negative argument), jc,(f) is 
the ith input signal, and w«(f) is the weight of the ith input to the node. 

The basic perceptron model was an example of a learning algorithm. Nilsson 
(1965) summarizes these early learning systems. 

1.3.5 Problems with Early Systems 

Neural network research experienced a general setback following the publica-
tion of a paper by Minsky and Pappert (1969) proving that a single-layer perceptron 
could not solve the exclusive or (XOR) problem. In fact, single-layer perceptrons can 
only separate categories that are linearly separable, that is, separable by a hyperplane 
(in two dimensions, a line). Figure 1.5 shows the XOR problem; c0 is the category in 
which the polarity of the features is the same, which should have an output of 0 for the 
XOR, and c\ is the category in which the polarity differs, which should have an output 
of 1 for the XOR. There is no line that can separate these categories. Unfortunately, 
even though Rosenblatt had proposed the use of multilayer networks to overcome this 
problem, these criticisms stymied neural network research for well over a decade. The 
limitation of the current computers in terms of both memory and speed was one rea-
son for the loss of interest in the early neural network research. The problems ad-
dressed as examples in the neural network models were fairly simple, with few nodes. 
The training often took hours to accompHsh. Many justifiably felt that these time and 

Sensory Area Association Area Response Area Indicator Light 
(Photoreceptors, s-units) (Associators, a-units) (Responders, r-units) 

Positive Feedback 
► 

Negative Feedback 

Figure 1.4 Diagram of Simple Photoperceptron. 
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XOR Truth Table 

Input 1 

0 

0 

1 

1 

Input 2 

0 

1 

0 

1 

Output 

0 

1 

1 

0 

1 ■ (0,1) (1.1) 

(0,0) „(0,1) 

Figure 1.5 The Exclusive OR Problem (XOR). 

memory considerations made it difficult to tackle practical problems. With the advent 
of faster and faster hardware with large, inexpensive memory, these worries ceased to 
be considerations in the new generation of neural network models. 

1.4 PRECURSOR TO CURRENT MODELS: 
PATTERN CLASSIFICATION 

Pattern classification (sometimes called pattern recognition) was one of the first meth-
ods applied to medical applications and has found applications in diverse areas from 
electrocardiograms to genetic sorting. (For an historical perspective of pattern recog-
nition, see Chapter 9.) 

What is a pattern recognition problem? As an example, consider a group of pa-
tients who have come to the emergency room with chest pain. Subsequently, some of 
these patients are found to have had a myocardial infarction (MI), and others are 
found to have had angina. The first objective of a pattern classification system is to de-
termine which parameters enabled the medical staff to distinguish between these two 
diagnoses. This is a two-category problem. The initial phase consists of feature extrac-
tion. Features are properties of items to be classified that will aid in discriminating be-
tween classes. 

1.4.1 Feature Extraction 

Determining features is the most crucial step in designing a pattern recognition 
decision aid. In the emergency room example given earlier, we must identify parame-
ters useful in distinguishing between the two classes. Identification of possible features 
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requires domain knowledge or access to domain knowledge relevant to the applica-
tion. As a simple illustration, suppose we know that patients with Mis in general have 
low blood pressure, whereas those with angina in general have elevated blood pres-
sure. If we plot the histograms for blood pressure for all patients with either disease, 
we may get a plot similar to that shown in Figure 1.6. Note the area of overlap between 
the two groups, so that the groups cannot be completely separated by this one variable. 
In addition, we know that patients with Mis may have elevated white blood counts, 
whereas patients with angina have normal white blood counts. If we consider only 
these two parameters, or features, we have a two-variable problem. We combine these 
features into a two-dimensional feature vector x = (x1} x2), where xx = systolic blood 
pressure (BP) and x2 = white blood count (WBC). For the sake of this example, we will 
consider only systolic blood pressure. In this simple case we can plot Χχ versus x2. Fig-
ure 1.7 shows a sample plot of five cases in each category. The squares represent cases 
with MI, and the circles represent cases with angina. 

The second objective of a pattern classification system is to find a separator that 
will divide these two classes by placing as many samples into the correct category as 
possible. The dashed line in Figure 1.7 shows a possible separator with one misclassifi-
cation. Additional features may result in better classification or a more robust model. 
The following considerations should be kept in mind: 

1. Look for a classification that minimizes error. 
Ideal: all cases classified correctly; if not possible, minimize either the number 
of errors or the cost of errors. 

2. More features may be needed. 
For three features, Figure 1.6 becomes 3-D, for four or more, no picture! 

Figure 1.6 Histograms of Systolic Blood Pressures for Myocardial Infarction (MI) and Angina. 
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Figure 1.7 Plot of White Blood Count versus Systolic Blood Pressure. 

3. More classes may be relevant. 
For example, MI, angina, and congestive heart failure. 

The final objective of pattern classification is to use the separator to classify new 
cases. In this way, the pattern recognition system is used as a decision aid. 

1.4.2 Supervised Learning 

The preceding classification is an example of supervised learning: data of known 
classification are used to determine important parameters (components of the feature 
vector) that contribute to the correct decision. To use supervised learning, a training set 
must be available for development of the separating vector. A test set is then used to 
determine the accuracy of the separator. Ideally, the training set and test set should be 
disjoint. 

The question that remains is, How can the separating vector be obtained? In our 
simple example, we did it geometrically; for data of higher dimensionality, this will not 
be possible. The separator is determined through a learning algorithm that is the heart 
of the method. (Learning algorithms will be discussed shortly and in detail in Chap-
ter 6.) 

1.4.3 Unsupervised Learning 

Unsupervised learning is a much more difficult problem. In this case, data of un-
known classification are used. The objective is to try to find patterns in the data that 
will allow the data to be grouped or clustered according to similar characteristics with 
the characteristics defined in the feature vector. The main method for accomplishing 
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unsupervised learning is clustering, with a number of variations. (Clustering will be dis-
cussed in detail in Chapter 5. Recent approaches also include data mining and genetic 
algorithms, discussed in Chapter 14.) 

1.4.4 Learning Algorithms 

The purpose of a learning algorithm is to determine which features are important 
for a particular decision as well as their relative importance. In most pattern classifica-
tion systems, a feature vector is defined as 

X = (Xl,X2,- ■ ■ ,Χη,) (1-2) 

where each xt is a feature and n is the dimensionality of the vector. In classification pro-
grams, the objective in the most straightforward two-class problem is to obtain a deci-
sion surface that can separate the data. The two-variable equivalent to this is shown in 
Figure 1.7. For the «-dimensional case, we want the following to hold: 

D(\) > 0 => x belongs in class 1 
D(x) < 0 => x belongs in class 2 
(D(x) = 0 is indeterminate) 

where 

D(x) = fj=wixi (1.3) 

or in vector format 

£>(x) = w x (1.4) 

In order to find the value for D(x), the values for the two vectors w and x must be 
known. The values for x are obtained from the data. It is the job of the learning algo-
rithm to determine the values for w. In supervised learning, an additional important 
piece of information is available: for each x, the class to which it belongs is known. 

A general algorithm for supervised learning follows: 

Make an initial guess for each component o/w. 
Select a training set of data. 
For each vector in the training set: 

Compute D(x) 
J/D(x) > 0 and x ε class 1 or D(x) < 0 and x ε class 2, do not adjust w 
//D(x) > 0 and x ε class 2 adjust w according to rule 1 
7/D(x) < 0 and x ε class 1 adjust w according to rule 2 

Until w does not change (or until criterion function is minimized). 

Basically, learning algorithms differ in the definition of rules 1 and 2 in the preceding 
algorithm and in the determination of the criterion function that determines when the 
iterative weight adjustment should stop. A number of approaches have been used, in-
cluding Bayes learning (Chapter 15), perceptrons (Chapter 4), potential functions 
(Chapter 4), and backpropagation (Chapter 4). 

The simple algorithm given above is complicated in practice by a number of fac-
tors. The most obvious problem is what to do if w does not cease to change, which will 
happen when it is not possible to correctly classify all samples in the training set. If all 
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samples can be correctly classified, the set is said to be linearly separable. If not, the al-
gorithm must terminate on some other condition, which will hopefully ensure that as 
many samples as possible are classified correctly. This is handled by defining what is 
known as a criterion function.These functions are defined differently depending on the 
approach taken and will be discussed in detail later in this book. 

As an example, consider our two-dimensional problem given earlier. This is a 
two-category problem. We will consider the presence of MI to be class 1 and the pres-
ence of angina to be class 2. Our problem is then defined by the following components: 

D(x) = w · x = wix2 + w2X2 (1.5) 
where 

Xi. systolic blood pressure 
x2: white blood count 

If Z)(x) > 0, then we will assume that x belongs to class 1 (MI); if D(x) < 0, we will as-
sume that x belongs to class 2 (angina); if D(x) = 0, then we can make no determina-
tion. 

For the purpose of illustration, we will use the perceptron learning rule, de-
fined as 

Wi(t + 1) = Wi(t) + η μ ( 0 - y(t)]Xi(t) (1.6) 

that computes each weight adjustment. The iteration is represented by t, and η is the 
learning rate, which we will set to 0.01. We define y(t) and d{t) as follows: 

v(i) = l i f l>(x)>0 
y(t) = - l i f D ( x ) < 0 
d(t) = 1 if vector belongs to class 1 
d(t) = - 1 if vector belongs to class 2 

Table 1.1 contains values for our ten feature vectors. To make our calculations 
simpler, we can scale the data so that both values are of similar magnitudes. We will di-
vide all WBC values by 1000 and all blood pressure values by 10. We will select the first 
two vectors of each class, alternating classes, for inclusion in the training set: 

tx = (11.0,13.0) (vector xl5 class 1) 
t2 = (18.0,5.0) (vector Xe, class 2) 

TABLE 1.1 Feature Vector Values for Differentiation between 
Myocardial Infarction (MI) and Angina 

Feature Vector Diagnosis Systolic Blood Pressure White Blood Count 

110 13,000 
90 12,000 
85 18,000 

120 8,000 
130 18,000 
180 5,000 
200 7,500 
165 6,000 
190 6,500 
120 9,000 

Xi 

X2 

*3 

«4 

*5 

*6 

*7 

«8 

X9 

x 10 

MI 
MI 
MI 
MI 
MI 
Angina 
Angina 
Angina 
Angina 
Angina 
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t3 = (9.0,12.0) (vector x2, class 1) 
t4 = (20.0,7.5) (vector x7, class 2) 

We will make an initial guess for each weight as ΗΊ = -0.3, w2 = 1.0. Initially, we 
substitute vector ti into Eq. (1.5): 

£>(ti) = -0.3 (11.0) +1.0(13) > 0; therefore v(r) = 1 
ti belongs to class 1; therefore d(t) = 1 

Substituting into Eq. (1.6), we see that as the classification is correct, no weight adjust-
ment is made. We then proceed with the second vector substitution, which also results 
in no weight adjustment as does the third. For the fourth vector 

D(t4) = -0.3(20.0) + 1.0(7.5) > 0,y(i) = 1 
t4 belongs to class 2 

Therefore, substituting into Eq. (1.6) 

ΜΊ(1) = -0.3 + 0.01[(-1 - (1)] 20.0 = -0.7 
w2(l) = 1.0 + 0.01[-1 -(1)]7.5 = 0.85 

The process must then begin again with ίχ and continue until all vectors are classified 
correctly. After completion of this process, the resulting weights are: 

w1 = -0.7 
H-2 = 0.85 

Our decision surface is 

£>(x) = -0.7*! + 0.85Λ:2 (1.7) 

The remainder of the vectors in Table 1.1 will be our test set, which will be used to de-
termine how well our decision surface works. For example, substituting vector x3 from 
Table 1.1 in Eq. (1.5): 

£>(x3) = -0.7(8.5) + 0.85*(18) > 0, which is correct since vector x3 belongs to class 1. 

1.5 RESURGENCE OF TH E NEURAL 
NETWORK APPROACH 

Neural networks have found a wide range of applications in the last decade (Carpen-
ter and Grossberg, 1988; Sabbatini, 1992; Computer Magazine, 1988) and in many cases 
have replaced knowledge-based approaches that became popular in the 1970s (Davis 
and Lenat, 1982; Barr and Feigenbaum, 1982). Neural networks permit rapid develop-
ment of a model through the learning algorithm if sufficient data are available. 

Resurgence of the neural network approach began in the late 1970s and early 
1980s with the work of Kohonen, Hopfield, Grossberg, and Rummelhart. In the 1970s, 
Grossberg (1988) developed the adaptive resonance theory (ART) and theories about 
the functioning of biological nervous systems that Carpenter and Grossberg (1988) 
later developed into self-organizing neural network architectures. Kohonen (1984) also 
did pioneering work on self-organizing networks. In the early 1980s, Hopfield and oth-
ers introduced new approaches based on the early work of Hebb (1949). Rummelhart 
and his group (Rummelhart and McClelland, 1986) developed the backpropagation 
method, which became one of the most widely used approaches in neural network de-
sign. Hypernet, developed by Cohen and Hudson in the early 1980s (Cohen, Hudson, 
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and Anderson, 1989), extended the potential function approach and in the process in-
troduced the single and multidimensional Cohen orthogonal functions that encom-
passed the possibility of fractional contribution of nodes. The new approaches devel-
oped by these researchers, as well as others, overcame the limitations of the early 
neural network approaches. These methods, together with the advances made in com-
puter architecture providing faster processing and cheaper memory, made the neural 
network concept practical. (In Chapters 2 through 5 we will examine in detail the new 
neural network structures that began in the 1980s, along with biomedical applications 
for each method.) 

1.6 BASIC CONCEPTS 

1.6.1 Artificial Neurons 

One of the basic ideas behind neural networks is to construct artificial neurons 
that have the characteristics of actual neurons. Artificial neurons, or nodes as they are 
often called, receive input from multiple other nodes. These multiple inputs can be con-
sidered as dendrites in the biological neuron. Like neurons, the nodes produce one out-
put that can be associated with the axon. In computing the output, the input informa-
tion is weighted, either positively or negatively. These weights are analogous to the ex-
citatory and inhibitory action of the chemical transmitters in the actual neuron. In neu-
rons, an output results only if a certain threshold voltage is exceeded. This action is 
sometimes simulated by use of threshold values in the node, although not all models 
use the threshold approach. 

1.6.2 Selection of Input Nodes 

In the initial design of a neural network, the number and type of input nodes 
must be determined. These decisions are based on the nature of the problem. As we 
will see in the next chapter, nodes may be binary, representing only an on or an off 
state, or they may accept continuous values. The input nodes must be able to represent 
all relevant information that is pertinent to the problem. The process of defining input 
nodes is connected with feature selection in which salient features of the problem un-
der consideration are analyzed. This process is discussed in Chapter 3. 

1.6.3 Network Structure 

The early neural networks were only two-layer structures. As discussed earlier, 
this construction greatly limited their usefulness in that only linear problems could be 
represented. In the second generation of neural networks, new structures were devel-
oped which consisted of three or more layers. The most common structure is the three-
layer network as illustrated in Figure 1.8. These three layers consist of the input layer, 
the hidden or interactive layer, and the output layer. Many other network configura-
tions have been used, but in general the three-layer network is capable of addressing 
all problems which the more complex structures address. The manner in which nodes 
are connected is different depending on the approach and will be described in detail in 
later chapters when each method is discussed. 

1.6.3.1 Feed-Forward Networks. The methods described in Section 1.4 apply 
to feed-forward networks. These networks compute weights that are used to determine 
output from a node that is subsequently fed to the next layer. In the detailed example 
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Figure 1.8 Three-Layer Neural Network Structure. 

given earlier, the weights determined the impact that the input nodes have on the out-
put, but no information is fed back to the input nodes. 

1.6.3.2 Feed-Backward Networks. The revival of neural networks began in 
the early 1980s with the work of Hopfield (1982). The Hopfield model was completely 
different from earlier approaches in that the neurons, or nodes, had two-way connec-
tions. Instead of adjusting weights to tune the output of nodes, the network stored pat-
terns that were later used to process unknown input vectors. (The Hopfield net and 
other feed-backward approaches will be described in detail in Chapter 2.) 

1.6.4 Learning Mechanism 

We saw an example of a learning algorithm in Section 1.4, with a specific learn-
ing rule given by the perceptron learning rule. As we will learn in subsequent chapters, 
many different learning mechanisms have been tried in neural networks. All have ad-
vantages and disadvantages. Some offer strong mathematical foundations, whereas 
others are more ad hoc. The learning mechanism affects the speed of convergence of 
the network, and indeed determines whether or not it converges at all. It can also af-
fect the accuracy of the model in classification of unknown cases. 

1.6.5 Output 

Many neural networks have only one output node. This is not the only possible 
structure. As we will see in subsequent chapters, it is possible to have multiple output 
nodes and even output nodes that feed into other types of decision-making strategies, 
such as symbolic reasoning. 

1.7 SUMMARY 

In this chapter we have reviewed some of the components of biological nervous sys-
tems that are important contributors to the foundations of artificial neural networks. 
In addition to these biological precursors, the most important technical precursor to 
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neural networks, pattern classification, which was used successfully for many years in 
design of medical decision-making aids, was summarized. In the subsequent chapters 
of Part I, we review pattern classification in more depth, along with different types of 
neural networks and corresponding learning algorithms as well as their uses in bio-
medical problem solving. 

EXERCISES 

1. What is the main reason that the neural network approach introduced in the late 
1950s was abandoned for over twenty years? 

2. In what ways do neural network models correspond to biological nervous systems? 
Can you list aspects of biological nervous systems that have not been incorporated 
into neural networks? 

3. Explain why the two-layer neural networks of the 1950s and 1960s could not solve the 
exclusive OR problem. 

4. In the example based on Table 1.1, we computed the weighting factors for the first four 
passes. Complete this calculation, stopping when all four vectors in the training set 
have been classified correctly. Check to make sure that your weights agree with those 
given in the text. 

5. Substitute the remainder of the vectors in Table 1.1 into Eq. (1.5). How many of them 
are correctly classified? Does this correspond to the geometrical results in Figure 1.7? 

6. Repeat exercise 4, but change the order of the vectors in your training set to XÖ, X1; x2, 
x7. Do you get the same values for wx and w2? 

7. If you add a third variable, the linear separator is no longer a line. What is it? What 
happens for four or more variables? Can the same approach be utilized? 

8. Devise an alternative strategy for determining a decision surface if the two groups are 
not linearly separable. 

9. What happens if the classification problem has more than two classes? For example, 
assume the three possibilities are angina, MI, and congestive heart failure. Is it possi-
ble to use a perceptron-type model to solve this problem? 

10. Formulate mathematically the perceptron approach for four variables: white blood 
count, systolic blood pressure, diastolic blood pressure, and pH of the blood. 
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Classes 
of Neural Networks 

2.1 BASIC NETWORK PROPERTIES 

In the design of neural networks, several aspects are important, notably: 

Structure of Networks 
Number of layers 
Connectivity of nodes 

Properties of Nodes 
The activation range for each node 
The activation or transfer function 

Algorithm Design 
Weight initialization process 
Formula for calculating activation 
Learning method 

The examples given in this chapter show some of the variations in these factors. 

2.1.1 Terminology 

Vectors are denoted in boldface; for example, x = (χι,*2, . . . , x„) is a vector 
with n components. In general, each component of an input vector is represented by 
one input node. Weights that connect node i to node /' are designated by wy. Matrices 
are designated by boldface capital letters; for example, W represents a weight matrix if 
the dimensions are clear from the context; if not, W„m designates an n by m matrix. 

2.1.2 Structure of Networks 

Networks differ in the number of layers that are included. As we saw earlier, the 
first neural networks had only two layers, and so their capabilities were limited. Most 
current neural networks consist of three layers: input, hidden, and output. Although 
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some networks may include additional layers, it can be shown that the three-layer net-
work can perform all functions of networks with more layers, but in some cases not as 
efficiently. 

A fully connected network means that all nodes are connected to all other nodes. 
Feed-forward networks have connections that point from input nodes to output nodes. 
Recurrent networks have some type of feedback connections (from output to hidden 
layer, for example). If a network is symmetric, then reverse connections are equal to 
forward connections, that is, 

2.1.3 Computational Properties of Nodes 

A node is the representation of the biological neuron, and in some publications, 
the terms neuron and node are used interchangeably. The activation range of a node 
indicates the values that it can assume. In some networks, the nodes may be binary with 
the only allowable values being 0 or 1. In some binary systems, the allowable values are 
- 1 and 1 instead of 0 and 1. This representation is normally termed bipolar. An acti-
vation level can also be continuous on the unit interval [0, 1] or can assume unre-
stricted continuous values. 

Figure 2.1 shows a typical computational structure for a node in a network. In 
general, input values are summed in the node. The result may then be adjusted by some 
offset Θ that varies depending on the design of the network. The output is then deter-
mined using the adjusted summation as the argument in a function/. (Choices for/are 
discussed later in this chapter.) The general equation is 

3 ' = / ( Σ ( Η ' Λ - θ ) ) (2.1) 

Figure 2.1 Computational Structure of a Node. 

where the node has n inputs, wt is the weight associated with the ith input, Θ is the off-
set or internal threshold value, and / i s defined by the algorithm. Some common defi-
nitions for/are illustrated in Figure 2.2 (Lau, 1992). Specific examples of the applica-
tion of these functions are seen in the approaches illustrated in the following sections. 
These functions are called activation functions or transfer functions. For some algo-
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Figure 12 Examples of Functional Nonlinearities. 

rithms, specific mathematical conditions apply, for example, differentiability. In some 
instances, linear activation functions are also used. 

2.1.4 Algorithm Design 

Neural networks can be classified in a number of ways depending on structure, 
function, or objective. A functional classification given by Fu (1994) divides neural net-
works into the following categories according to their functional properties. 

Classification Models: Classification models assign input data items to two or 
more categories. These models may use supervised learning in which the cate-
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gories are known or unsupervised learning in which the categories may not be 
known. 
Association Models: The two types of association models are auto-association, 
which focuses on the retrieval of an object based on part of the object itself; and 
hetero-association, which focuses on the retrieval of an object in one set using an 
object in a different set. 
Optimization: The objective of these systems is to find the best solution by mini-
mizing a cost function or other measure. 
Self-Organization: This approach organizes information using adaptive learning 
facilities. It is similar to clustering algorithms, based on unsupervised learning 
techniques. 

2.2 CLASSIFICATION MODELS 

The most common application of neural networks in biomedical engineering is in clas-
sification problems. We saw this type of application in the previous chapter when we 
looked at early neural network approaches, specifically the perceptron, as well as other 
pattern classification approaches. Although the initial perceptron had several limita-
tions that restricted its usefulness, multilayer nonlinear perceptron models have been 
developed that remove these limitations. 

Classification models may be based on neural networks that use supervised 
learning in which data of known classification are used as a training set to develop a 
decision surface that can be used later to classify new data items. As will be shown in 
Chapter 4, there are numerous supervised learning approaches that differ in both the-
ory and application. In addition to the perceptron, supervised learning neural networks 
include backpropagation, ADALINE (ADAptive LINear Element), potential func-
tions, and min-max networks (which is discussed along with fuzzy approaches in Chap-
ter 16). 

Another type of classification model that uses unsupervised learning techniques 
relies on data for which the classification of each case is unknown. These methods 
search for patterns in the data by which each case can be classified and are often re-
ferred to as clustering. The data are clustered into groups that contain similar cases, in 
which similarity is determined by one of a variety of measures. Unsupervised learning 
approaches include Kohonen networks, competitive learning, adaptive resonance the-
ory (ART), and Hebbian learning (see Chapter 5). 

Most of the biomedical examples illustrated in this book can be categorized as 
classification networks, both supervised and unsupervised. Classification networks of-
fer strong techniques for developing decision-making models. These applications are 
treated in detail in subsequent chapters. In order to give the reader a broad view of the 
field of neural networks, other types of models and their applications are summarized 
in the remainder of this chapter. 

2.3 ASSOCIATION MODELS 

Association models have applications in computer storage problems and communica-
tions problems and in general have binary input. These networks can deal with other 
types of input if it is first converted into a binary format. As mentioned in Chapter 1, 
many of these networks use a threshold approach. 
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2.3.1 Hopfield Nets 

In 1982, John Hopfield of the California Institute of Technology designed a new 
type of neural network that was one of the first steps in reviving the neural network 
methodology that had been essentially dormant for the previous fifteen years (Hop-
field and Tank, 1986). The Hopfield network is useful for both auto-association and op-
timization tasks. 

2.3.1.1 Theoretical Basis. The Hopfield net utilizes the concept of surface 
minimization in physics and consists of a set of interconnected nodes. Each node, or 
neuron, in the network is binary-valued, traditionally assuming the values of - 1 or 1. 
Each node is connected to every other node but not to itself. The result is n(n - 1) con-
nections for n nodes. A diagram of the Hopfield network is shown in Figure 2.3. The 
main idea is that a single network can store multiple stable states. 

In the Hopfield net all weights are symmetric, wtj = Wß. The network can assume 
a set of stable weights so that when a neuron acts on its neighbors the values of the 
neuron do not change. For a given input pattern, the network can converge to the sta-
ble state nearest to that pattern. The network is presented with examples called probe 
vectors that are binary-valued. The vectors in the network that are used for compari-
son are called exemplar patterns. 

Output 

Input 

Figure 23 Hopfield Network. 

Hopfield Algorithm for Auto-Association 
Assign Connection Weights 

m 

wy = X xis xjs i^j (2.2) 
s=7 

for a network that stores m patterns, where Wy is the connection weight from unit i 
to unit j and xis is the ith component in the pattern vector (exemplar). 
Initialize 
For an input vector Xj 

μ,(θ) = Xj 
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where μ^Ο) is the activation level of unit j at time t = 0 and Xj is the \th component 
of the input pattern. 
Iterate until Convergence 
At time t 

^(t + i) = Fa^^(t)) (2.3) 

where 

¥(y) = 

1 y > 0 
-1 y < 0 
/Ajftj (unchanged) y = 0 

Repeat until the activation levels of nodes remain unchanged with further itera-
tions. The pattern of activation upon equilibrium represents the stored pattern that 
best matches the unknown pattern. Note that F is an example of a hard-limited 
function as illustrated in Figure 2.2. 

EXAMPLE 
Consider the following example from Fu (1994): 

Use the outer product to construct the initial weight matrix: 

W = Σ ( Λ - In) (2-4) 
i 

where x, is the n-dimensional bipolar vector to be stored and /„ is the nxn identity matrix. 
Define three vectors 

Xi = = ( i , - i , - i ) 
x2 = ( -1 ,1 , -1) 
x3 = ( -1 , -1 ,1) 

V = 
0 - 1 

- 1 0 
- 1 - 1 

- 1 
- 1 

0 

Thus 

Then use x\ as the input vector (also known as the probe vector): 

F(x1W) = F[2,0,0] = [1 , -1 , -1] 

which is the vector xv In other cases, more than one iteration may be necessary. 

2.3.2 Other Associative Memory Approaches 

The bidirectional associative memory (BAM) (Kosko, 1988; Freeman and Ska-
pura, 1992) can relate an input vector to another vector and can generalize over simi-
lar inputs. There are a number of variations on the BAM algorithm, including the 
ABAM (adaptive bidirectional associative memory), which can accept continuous 
rather than binary inputs (Kosko, 1987). 

2.3.2.1 Theoretical Basis of Bidirectional Associative Memory (BAM). The 
BAM network associates pairs of vectors such that when vector at is input to the 
network it recalls vector bi. The BAM network is shown in Figure 2.4. The back-
ward weight is the transpose of the forward weight, making this a symmetric network. 
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Backward 
Connection 

Output Layer 

Forward Connection 

Input Layer 

Figure 2.4 The Bidirectional Associative Memory (BAM). 

BAM Algorithm 
Assign Connection Weights 
Forward Weights 

W = £x k
Ty k (2.5) 

k = i 

for a network that stores m patterns, where W is the connection weight matrix and 
patterns xk and yk form an association pair. 
Backward Weights 

W ü W ü 

Initialize 
For an input vector Xj 

Φ) 
where μ^(Ο) is the activation level of unit j at time t = 0 and Xj is the }th component 
of the input pattern. 
Iterate until Convergence 
At time t 

Mjft + 1) = Ff lwy Atjftjj 

where F is a hard-limiting function 

\1 

(2.6) 

*(y) = /Ajftj (unchanged) 

y>0 
y<0 
y = 0 

(A sigmoid function may be used instead of the hard-limiting function.) 
Repeat until the activation levels of nodes remain unchanged with further itera-
tions. The pattern of activation upon equilibrium represents the stored pattern as-
sociated with the input pattern. 
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EXAMPLE 
Consider the following example for the six binary vectors: 

aj = (1 0 1 0 1) bx = (1 1 1 0) 
a2 = (0 0 1 1 1) b2 = (11 0 1) 
a3 = (11 0 01) b3 = (11 0 0) 

The bipolar versions of these vectors are: 

Xl = ( i - u - l i) yi = (i 11 - l ) 
x2 = (-1 - 1 1 1 1 ) y2 = (1 1 -11) 
x3 = (11 - 1 -11) y3 = (11 - 1 -1) 

The weight matrix is then constructed by 

w, 

The result produces a 5 X 4 weight matrix. The construction of the weight matrix is left as an 
exercise. 

2.3.3 Hamming Net 

2.3.3.1 Theoretical Basis. A method similar to the Hopfield network that op-
erates on binary input and has applications in communication theory is the Hamming 
network (Lau, 1992). This network uses the optimum minimum error classifier for this 
situation that selects the minimum Hamming distance. The Hamming distance is the 
number of bits in the input that do not match the exemplar. For example, given the two 
vectors: 

Xl: = (0,1,1,1,0,0,1) 
x2: = (0,1,0,1,0,0,1) 

the Hamming distance between the two is 1. A diagram of the Hamming net is shown 
in Figure 2.5. 

Hamming Algorithm 
Assign Connection Weights 

Wy = xis/2 6j = n/2 
7 < j < n , l < j < m 

In the upper subset 

wy = 1, k = 1 
- ε k Φ 1 ε < lim 

for a network that stores m patterns, where Wy is the connection weight from unit I 
to unit) and Qj is the threshold for that node. xis is the ith component in the pattern 
vector xs. All thresholds in the upper quadrant are zero. 
Initialize 
For an input vector Xj 

H(0) = F(f wy %i - Δ (2.7) 
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Figure 2 ^ The Hamming Net. 

where μ^Ο) is the output (or activation) level of unit j in the upper subnet at time 
0, Xj is the \th component of the input pattern, and F is the threshold logic nonlin-
earity from Figure 2.2. 
Iterate until Convergence 
At time t 

Mift + 1) = Ffaft; - B Σ ßk(t)) 
k Φ j (2.8) 
2 < k , j < m 

This process is repeated until convergence when the output of only one node is 
positive. 

2.3.4 Applications of Association Models 

As mentioned earlier, the initial application of association models was computer 
storage. These models have also been used in communications involving data transfers. 
In auto-associative procedures, an input vector that is like a sample vector a will recall 
the stored vector a and will also recall itself. The auto-associative approach is seen in 
the generation of the weight matrix that is derived from exemplar vectors multiplied 
by their transposes. In auto-association as illustrated above in the Hopfield net, a mem-
ory can be completed or corrected upon retrieval by self-association if given a partial 
or corrupted input. The Hopfield net suffers from a number of problems, including a 
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tendency to converge to local minima and limited network capacity. The BAM ap-
proach is similar to the Hopfield net, but unlike the Hopfield net, the BAM network 
generates matrices that are not necessarily square. 

The Hamming net is an example of a maximum likelihood classifier. It imple-
ments the optimum random minimum error classifier when bit errors are random and 
independent; thus its performance is always as good as or better than the Hopfield net 
when used as an optimizer. (Minimum error classification methods are discussed in 
Chapter 4.) 

2.4 OPTIMIZATION MODELS 

Neural networks are useful for solving optimization problems that cannot easily be 
solved by algorithmic means. An optimization problem consists of finding the best so-
lution given a set of constraints. The variables are encoded as input vectors, and the 
constraints are represented by weights connecting the nodes, which may be positive or 
negative. An energy function is compared to a function derived from problem con-
straints in order to adjust the weights. The Hopfield net, discussed earlier as an auto-
associative network, can also be used for optimization problems. 

2.4.1 Hopfield Net 

The Hopfield algorithm must be modified slightly when used as an optimization 
method. The energy function of the Hopfield net is a Lyapunov function, which be-
comes smaller for any change in the state of the network until a stable state is reached. 
A Lyapunov function exists for all feedback networks and provides a characteristic 
that is equivalent to energy, hence the name "energy function." In the energy model, 
any stable state represents a potential well. An input vector represents an initial con-
dition that will lead to the selection of a potential well (Chester, 1993). 

Hopfield Algorithm for Optimization 
The Hopfield algorithm is modified in the following manner for optimization 
problems: 
Assign Connection Weights 
Determine an energy function E c based on the constraints of the problem. 
Compare the function with the energy function of the Hopfield net based on: 

EH = ~%ΣΣ w« Mi ßi ~ Σΐί μι +Σ »i Mi (2·9) 
j i i i 

which is a Lyapunov function, discussed below. EH is the network energy, Ij is the 
external input to node i, and θί is the threshold for node i. 
Initialize 
μ,(0) = small randomized value 
Iterate until Convergence 
At time t 

Mjft + 1) = F(l wy n(t) + 10 (2.10) 

where 

F(y) = 

1 y > 9 i 
-1 y < θι 
jiijft) (unchanged) y = θι 
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Repeat until the activation levels of nodes remain unchanged with further itera-
tions. The pattern of activations represents the optimized solution. 

EXAMPLE 
Hopfield and Tank (1985) applied the Hopfield net to the traveling salesman problem (TSP). An 
n-city TSP requires an array of n2 nodes. Each row in the matrix represents a single city, and each 
column represents the order in which that city is visited. A five-city visit for cities A, B, C, D, E 
in which the order of the visits was C, A, E, D, B is represented by 

A 
B 
C 
D 
E 

0 
0 
1 
0 
0 

1 
0 
0 
0 
0 

0 
0 
0 
0 
1 

0 
0 
0 
1 
0 

0 
1 
0 
0 
0 

Hopfield and Tank designed an energy function that restricted the network into one active neu-
ron for each column and each row that was also proportional to the sum of the distances be-
tween cities. The general idea is to minimize the sum of the distances. For the ten-city case, for 
which there are more than 180,000 paths, the network chose one of the two shortest possible 
paths. However, the approach breaks down if the number of cities exceeds 30. 

The Hopfield net has stability problems that are better addressed by Boltzmann machines. 

2.4.2 Boltzmann Machines 

In Boltzmann machines, local minima are avoided by adding some randomness 
to the energy function. The binary states of the neurons are updated by stochastic means. 

2.4.2.1 Theoretical Basis. The basis for this approach was molecular physics 
in which the Boltzmann distribution provides the probability density function for the 
kinetic energy of particles in a gas of absolute temperature T. The probability that any 
given particle has an energy between E and E + AE is proportional to e'ElkTdE where 
k is the Boltzmann constant. The assumption (Hinton and Sejnowski, 1986) is that in a 
fully connect Hopfield-type binary network (states 0 and 1) the fcth neuron has a prob-
ability pk of being in the on state (activation is 1), where 

pk = 1/(1 + e-AE/kT) (2.11) 

where ΔΕ* is the energy gap between the on and off states of the neuron and Tis anal-
ogous to the system temperature. The network's global energy is 

Y^WijXiXj (2.12) 

where x, is the /th binary nodal signal and w/,· is the weight connection from node i to 
node j . At thermal equilibrium, the probability of each state is constant and corre-
sponds to the Boltzmann distribution 

PA/PB = e - ( ^ - £ s ) / r (2.13) 

with the probability of the ratio of any two states depending on the difference in en-
ergy. 

Boltzmann Algorithm 
Assign Connection Weights 
Same as Hopfield optimization net 
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Initialize 
Select an initial temperature. 
Iterate until Convergence 
Calculate the probability that unit i is active: 

Pi = 11(1 + eT^/Tj (2.14) 

where AEj is the total input energy received by unit i. 
The weights are calculated by 

AWij = ε (Ρϋ
+ - Py-j (2.15) 

Repeat until thermal equilibrium is achieved. The pattern of activation represents 
the optimized solution. 

2.4.3 Applications of Optimization Models 

As we saw in the example of the traveling salesman problem, optimization meth-
ods can be used in problems that cannot be solved using the algorithmic approach. Ap-
plications in this category include problems that are described by means of constraints 
for which a unique solution does not exist. In general, they involve tradeoffs among the 
variables to achieve the best overall solution in terms of an optimization function. The 
objective in the traveling salesman problem was to minimize the distance. In a prob-
lem involving the development of a medical protocol, the objective may be to minimize 
patient risk. (Additional optimization approaches will be discussed in Chapter 5.) 

2.5 SELF-ORGANIZATION MODELS 

Self-organization models are networks that can organize themselves without knowing 
the correct classification of input patterns and thus fall into the category of unsuper-
vised learning. Some examples of self-organization models are Kohonen networks, 
competitive learning, Hebbian learning, and adaptive resonance theory (ART). These 
systems are discussed in detail in Chapter 5 as examples of unsupervised learning. 

In 1981 Kohonen (1988) demonstrated the feasibility of the concept that systems 
could organize data without being taught. Since that time, a number of extensions to 
the initial concept have evolved. Figure 2.6 shows a two-layer network with n input 
nodes (corresponding to the dimensionality of the input vectors) and m output nodes 
corresponding to the m decision regions. Every input node is connected to every out-
put node. The connections from input node i to output node / is wtj. The information 
can be arranged in an n by m matrix in which each row represents input nodes and 
columns represent output nodes. The matrix elements are the corresponding weights. 
The i'th column in the matrix represents the set of synaptic input weights leading to the 
rth output node. 

Initial weights are chosen randomly. The organization process begins with the de-
termination of the similarity of an input vector to representation of each category. A 
number of methods exist. A distance measure, such as the Euclidean distance, can be 
computed between the input vector and the other vectors for each of the m output 
nodes. Alternatively, the dot product could be used. A winner among the vectors rep-
resented by the columns in the matrix is selected according to the calculation showing 
to which vector the input is most similar. 

Assume we are using the dot product. Each node computes the dot product of its 
weight vector and the input vector 

n, = x w, (2.16) 
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Output Nodes 

Input Nodes 

«-dimensional input vector 

Figure 2.6 Kohonen's Self-Organizing Network. 

where n, is the activation of unit /, x is the input vector, and w, is the weight vector for 
unit /, the rth column of the matrix. In matrix notation 

N = XW (2.17) 
Only the node with the maximum activation (the largest dot product) will produce an 
output (equal to 1). This process is similar to the /c-means clustering algorithm (see 
Chapter 5). The network learns by adjusting weights according to 

w(i + 1) = w(i) + η(χ - w(r)) (2.18) 
where η is the learning rate. Kohonen learning makes the winning weight vector closer 
to the input vector. 

Other self-organization models have been developed by a number of researchers 
including Carpenter and Grossberg (1986). The work by Hebb (1949) forms the basis 
for this type of learning. Chapter 5 presents additional algorithms pertaining to these 
approaches, along with biomedical applications. 

There are many applications of self-organization models in biomedicine, includ-
ing problems involving data analysis when nothing is known about either the number 
of categories present or the correct classification of each case, or both. (These topics 
are addressed in detail in Chapter 5.) 

2.6 RADIAL BASIS FUNCTIONS (RBF) 

Radial basis functions (RBF) utilize a combination of supervised and unsupervised 
learning techniques (Moody and Darken, 1989).The network consists of an input layer, 
a hidden layer, and an output layer as shown in Figure 2.7. 

2.6.1 Theoretical Basis 

Learning in the hidden layer is unsupervised with methods such as fc-means clus-
tering (Duda and Hart, 1973). Learning in the output layer is supervised and uses a 
least mean squares type of algorithm (see Chapter 4). After an initial solution is found, 
it is optimized through a supervised learning method. 



42 Chapter 2 ■ Classes of Neural Networks 

Output Layer 

Hidden Layer 

(Gaussian Basis Functions) 

Input Layer 

Figure 2.7 Radial Basis Function Network. 

Each unit in the hidden layer has a localized receptive field usually represented 
by a Gaussian function: 

μι = exp[-(x - w,)-(x - w,)/2ai2] (2.19) 

where x is the input vector, w, is the weight vector for hidden unit i, and σ,2 is the nor-
malization factor. The activation level of the output unit is 

i«·/ = W^i (2.20) 

where w,y is the weight from hidden unit i to output unit;'. 

Radial Basis (RBF) Algorithm 
Assign Connection Weights 

Output layer weights assigned to small random numbers. 
Initialize 

Hidden layer weights determined through clustering. 
Iterate until Convergence 
For the output layer 

wyft + 1) = Wjjft) + AWij (2.21) 

where 

Awy = η δί/ij 

where η is the learning rate, and 

8i = Ti - μ{ 

where Tj is the target output activation and μ\ is the actual output activation at 
unit i. 
Repeat until convergence. 
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2.6.2 Applications of Radial Basis Functions 

The radial basis approach can be used for modeling and classification, and it is 
also useful in dimensionality reduction. An application to neurobiological data is given 
in Poggio and Girosi (1990). 

2.7 SUMMARY 

We have seen examples of the major categories of neural networks: classification, as-
sociation, optimization, self-organization, and radial basis functions, along with corre-
sponding learning algorithms. The most relevant of these for the design of computer-
assisted support systems in biomedicine are classification and self-organization net-
works. The other techniques discussed here have, however, been used in biomedical 
problems. The researcher needs to keep an open mind regarding the availability of all 
these techniques to permit the development of innovative approaches to computer-
assisted support systems. 

EXERCISES 

1. For the diagram in Figure 2.1, assume that you have the following input to the node 
with the weights indicated: 

Input values: 1 - 1 - 1 1 1 
Weights: .5 .3 .2 .1 .1 

The internal threshold value is .2. Compute the output value for each of the functions 
given in Figure 2.2. 

2. Re-do the example for the associative Hopfield net given in the text but replace the 
bipolar vectors with binary vectors (e.g., xx = (0 0 1)). Does this change the outcome? 
Do you need to adjust the functions in Figure 2.2? 

3. For the BAM algorithm, compute the weight vector from the information given in the 
text. What is the result when you present the vectors ai and bi? 

4. Set up the problem definition for a traveling salesman problem with three cities. Design 
an energy function that meets the specified requirements. 

5. What is the major difference between Boltzmann machines and the other optimization 
models? What types of problems are better suited to Boltzmann machines? 

6. Self-organization models rely on unsupervised learning. Give a detailed example of a 
biomedical problem that would best be solved by an unsupervised learning approach. 
Define input variables for this application. 
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Classification Networks 
and Learning 

3.1 NETWORK STRUCTURE 

In this chapter, we will discuss neural network classification systems in which data vec-
tors are to be assigned to categories based on their values. The system may divide data 
into two categories or multiple categories. 

3.1.1 Layer Definition 

For the purpose of the discussion, we will make a number of simplifying assump-
tions and will use vector notation to represent feature vectors and nodes in each layer. 
We will assume a three-layer network. 

3.1.2 Input Layer 

The input layer consists of n nodes, nl5 n2, ■ ■ ■, nw where each node represents 
each input variable in a 1-to-l mapping. This is not the only possible configuration. For 
example, if binary nodes are used, several may be required to represent each variable. 
We will, however, assume the straightforward 1-to-l mapping here. 

3.1.3 Hidden Layer 

The hidden, or interactive layer, consists of interaction of nodes from the input 
layer. The learning algorithm determines the exact configuration. For purposes of this 
discussion we will assume m nodes, iu i2, ■ ■ ■, im. 

3.1.4 Output Layer 

The output layer represents the classification phase. If it is a two-category prob-
lem, the output layer will have two nodes. Another possibility is to have one output 
node that fires if the condition is present and does not fire if it is not present. For mul-
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Figure 3.1 Three-Layer Classification Neural Network. 

tiple category problems, more output nodes are required. The output nodes will be des-
ignated oi, o2, . . ., ok. In the case of the possibility of concurrent diseases, more than 
one of the output nodes may fire. For networks designed for differential diagnosis, rel-
ative strengths of the firings may be considered. Figure 3.1 shows a neural network 
with this general configuration. 

3.2 FEATURE SELECTION 

Feature extraction is a process through which input variables are selected for the de-
sign of a neural network. Feature selection is the same regardless of whether the learn-
ing is supervised or unsupervised. Feature extraction represents the first step in the 
process. 

3.2.1 Types of Variables 

First, it must be determined what type of variables can be represented in the 
nodes in the input layer. As we saw in the last chapter, some networks accept only bi-
nary input. Although any number can be represented as a binary number, this is not an 
efficient way to design a system if most variables are in fact continuous. 

3.2.2 Feature Vectors 

A feature vector x consists of «components, denoted Χχ,Χζ, . . ., x„. Each xt rep-
resents a variable that is relevant to the classification problem. 

An example of a feature vector for the classification of exercise testing data use-
ful for determining presence of coronary artery disease is: 

Χχ·. Resting systolic blood pressure 
x2- Resting diastolic blood pressure 
JC3: Resting heart rate 
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x4: Maximum ST depression 
x5: Heart rate at end of test 
x6: Systolic blood pressure at end of test 
χη·. Diastolic blood pressure at end of test 

In this example, the first three variables assume integer values, the fourth assumes con-
tinuous values, and the last three are Δ variables that represent changes over time. The 
ST depression is a variation of the normal electrocardiogram (ECG) pattern. (Refer to 
Figure O.4.) 

The important aspect of feature extraction is to enumerate all possible variables 
that may be useful in the classification process. If features are included which turn out 
to be unimportant, their weights will approach zero in the learning process. Thus it is 
better to err on the side of including too many variables. The number of variables that 
are feasible to include is limited, however, by the amount of data available for training, 
for roughly ten cases are needed for every variable that is included. 

The variables shown in the preceding example are all clinical parameters. Many 
other possibilities exist, such as patient history, family history, and imaging and time se-
ries data, including ECG. These last two categories are discussed in the next two sub-
sections. Some variables may be categorical. In most learning algorithms, categorical 
variables must be ordered. For example, if the categorical variable represents type of 
heart medication, there will be no inherent ordering from bad to good, lesser to greater, 
and so on. However, this information may be used if each medication is included as a 
separate binary variable that indicates whether or not the patient takes that medica-
tion. In general, this approach must be used for all nonordered categorical variables. 

3.2.3 Image Data 

Image data present additional difficulties. Some of the classic problems in pattern 
recognition have dealt with the recognition and classification of images. Feature ex-
traction in images consists of identifying some aspect of an image that allows it to be 
recognized. In complex images, this phase can be quite involved. A large body of liter-
ature exists in this area (Duda and Hart, 1973), but the problem remains partially un-
solved. For medical images, many approaches have been tried (Vannier, Yates, and 
Whitestone, 1992). For analysis of some images, for example, images of the head, sym-
metry is often a useful feature, with asymmetrical findings indicators of disease. Figure 
3.2 shows a CT (computed tomography) scan of the head of a patient with a possible 
tumor. Notice the asymmetry in the image. Other potentially useful features are 
changes in gray levels, areas with irregular borders, and changes from previous images 
of the same patient. As in all feature extraction, the selection of image features will be 
influenced by the goal of the classification system. 

3.2.4 Time Series Data 

Time series data can be considered in two categories: those with built-in patterns 
(e.g., ECGs) and those without built-in patterns (e.g., EEGs). Automatic analysis of 
ECGs is largely dependent on variations from the normal QRS complex previously il-
lustrated in Figure 0.4 in the Overview. In the preceding example, the maximum ST 
depression is a feature extracted from the QRS complex of the ECG (Cohen, Hudson, 
and Deedwania, 1985). Other aspects of the ECG, such as heart rate and R-R interval 
fluctuations, may also be important features, as we will see in Chapter 18 in the chaotic 
analysis of the ECG (Cohen, Hudson, and Deedwania, 1996). 
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Figure 3.2 CT Scan of Head of Patient with Tumor. 

For time series without patterns, feature extraction becomes even more difficult. 
In the EEG, spikes are important for determining brain activity. Both the frequency of 
occurrence and the magnitude of spikes may represent important clues. Additional 
complications with EEGs is the large number of channels recorded (up to 22), result-
ing in very large data sets. Work is continuing on the development of techniques for 
EEG analysis (Freeman, 1987; Kalayci and Ozdamar, 1995; Leuchter et al., 1993; Mpit-
sos et al., 1988; Petit et al., 1993; Pritchard et al, 1994; Woyshville and Calabrese, 1994). 

3.2.4.1 Chaotic Analysis of Time Series. Chaos theory, a new area of re-
search that has developed in the last twenty years, has been shown to be especially 
promising in the field of cardiology. Chaotic analysis provides a new way of looking at 
nonlinear time series data that in general result in systems with intractable mathemat-
ical solutions. Chaotic analysis has been shown to be useful in the analysis of ECGs 
(Chialvo and Jalife, 1987; Goldberger, 1989) and, to a more limited extent, in the analy-
sis of EEGs (Freeman, 1987). It is also useful in other medical time series, such as he-
modynamic studies (Cohen, Hudson, and Anderson, 1993). 

From the point of view of decision-making systems, the contribution of chaos 
theory is a measure of either the presence or absence of chaos in a system or of 
the degree of chaos present. There are two approaches to chaotic analysis: graphi-
cal and numerical. Graphical techniques include strange attractors, Poincare plots, 
and second-order difference plots. Numerical techniques include the fractal dimension, 
the Lyapunov exponent, and central tendency measure. In Chapter 18, we discuss 
second-order difference plots and central tendency measure in terms of a specific hy-
brid system. 
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3.2.4.2 Graphical Measures of Chaos 
POINCARE PLOTS. A Poincare plot is obtained from a time series by taking the 

value of the time series at time n and plotting it against the value at (n - 1). In gen-
eral, nonchaotic systems will have points clustered close together, whereas chaotic sys-
tems will have more dispersed points. 

SECOND-ORDER DIFFERENCE PLOTS. A second-order difference plot is similar 
to a Poincare plot except that an+2 — an+1 is plotted versus an+1 - a„.This results in a 
plot that is centered around the origin as shown in Figure 3.3. Again, the relative dis-
persion of points is the relative measure of chaos. This plot is used in computing the 
central tendency measure. 

Figure 3.3 Second-Order Difference Plots. 

STRANGE ATTRACTORS. Strange attractors, first described by Ruelle and Takens 
(1971), are another method for describing chaotic systems. A strange attractor is shown 
in Figure 3.4. The basic idea is that a phase state is created in which the state of the 
process is represented by a point. The strange attractor then charts this point through 
time. Other types of attractors, fixed points and limit cycles, have been used in physics 
for some time. 

Figure 3.4 A Strange Attractor. 

3.2.4.3 Numerical Measures of Chaos 
FRACTAL DIMENSION. The fractal dimension gives a measure of the degree of 

irregularity, or the efficiency of the object in the amount of space that it occupies. For 
example, a one-dimensional line occupies no space. But the outline of a Kock curve 
that has infinite crowding into a finite space occupies more space than a line but less 
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than a two-dimensional form (Gleick, 1987). Mandelbrot (1977) developed a method 
of calculating the fractal dimension. 

LYAPUNOV EXPONENT. The Lyapunov exponent provides a method for mea-
suring the effects of stretching, contracting, and folding in the phase space of an at-
tractor, which gives a picture of properties that lead to stability or instability (Gleick, 
1987). 

CENTRAL TENDENCY MEASURE. The central tendency measure (CTM) mea-
sures the degree to which points are clustered around the origin in second-order dif-
ference plots. It is computed by 

n = \'f 8(dd}(t-2) (3.1) 
b'=i 

where 

8(dd = 1 if [(a,+2 - ai+1)
2 + (a,+1 - a,)2]'5 < r 

0 otherwise 

where t is the total number of points in the time series and r is a radius selected by the 
user depending on the radius of dispersion of the points. A practical example of this 
approach is shown in Chapter 18. 

The use of measures of chaos in decision-making systems presupposes that these 
measures are different in the diseased state than in the normal state, or that they dif-
fer from one disease to another. Experimental evidence can lend support to these con-
jectures. In the case of the ECG, there is mounting evidence that this is in fact the case 
and that these measures can be effective in diagnostic problems (Cohen, Hudson, and 
Deedwania, 1996). Numerical measures of chaos can be used directly as input to neural 
network models as one or more parameters in the decision-making process. For the 
graphical measures, some method of comparison must be established. 

3.2.5 Issues of Dimensionality 

As we saw in Chapter 1, when we discussed linearly separable models in two di-
mensions, the classes were separated by a line that would generalize to a plane in three 
dimensions. After three dimensions, we can no longer visualize the class separation, but 
the mathematical concepts generalize, with hyperplanes separating classes in higher di-
mensions. As we will see in the next chapter, many interesting problems are not lin-
early separable but may be separated with higher-order equations. These surfaces in 
n-dimensional space are called hypersurfaces. By taking an equation of high enough 
order, any two classes can be separated. However, this decision surface will not be use-
ful in classifying new data sets as it is overdetermined. When nonlinear equations are 
used, care must be taken to avoid the generation of overdetermined decision surfaces. 

Decision surfaces will be represented by D(x) where x is an n-dimensional vec-
tor. If n = 2 and D(x) is linear, then 

D(\) = wiXi + w2X2 — w · x (3.2) 

For general n, the linear equation becomes 

D(x) = X wiXi = w · x (3.3) 
/= i 

which is the equation of a hyperplane. In the next chapter we will see a number of ways 
of generating equations for nonlinear £>(x). 

With the increase in the number of variables, and thus the increase in the dimen-
sionality, more cases are needed to train the system. In some approaches, attempts are 
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made to reduce the dimensionality by eliminating or combining variables. If a system 
of high dimensionality is trained on too few sample cases, the result is a model that pro-
duces poor results when new cases are introduced. 

3.3 TYPES OF LEARNING 

The basic types of learning undertaken with neural networks are supervised and un-
supervised. We have seen some examples of each. In the next chapter, we will present 
details on a number of supervised approaches, with unsupervised approaches treated 
in Chapter 5. In the following subsection, we introduce basic concepts that are com-
mon to all approaches. Other nonneural network approaches also use supervised and 
unsupervised learning, including pattern recognition (Chapter 1), genetic algorithms 
(Chapter 14), Bayesian learning, and discriminant analysis (Chapter 15). 

3.3.1 Supervised Learning 

Supervised learning is also called learning with a teacher. The network must be 
presented with data for which the correct classification is known. 

Assume that we define our feature vector, as above, with seven components, and 
that the objective is to determine from these seven data items whether or not the pa-
tient has coronary artery disease (CAD). We make the following definition: 

If D(\) > 0, the patient has CAD (class 1) 
If D(x) < 0, the patient does not have CAD (class 2) 
If D(x) = 0, no decision can be made 

Assume we have a training set of thirty-five cases, the first two of which are: 

x1 = (130,100,98,2.8,102,131,102) x1 is in class 1 (CAD) 
x2 = (120,77,72,0.0,110,160,90) x2 is in class 2 (No CAD) 

If we consider the simple linearly separable case, the objective of supervised 
learning is to determine the w,'s in Eq. (3.2). This is a straightforward procedure since 
we know the following: 

1. The values for all x,'s for each vector in the training set 
2. The range of appropriate values for D(\) for each vector in the training set 

Thus the only unknowns are the w,'s. Remember, however, that we do not have 
actual values of D(x), but only boundary conditions. The task of the learning algorithm 
is to iteratively adjust the w,'s until all vectors in the training set are correctly classi-
fied. (Methods by which this process can be accomplished are discussed in Chapter 4.) 

In most situations, especially in biomedical applications, the classes will not be 
linearly separable and higher-order functions must be used. 

3.3.1.1 Selection of Training and Test Sets. Generally, a training set is se-
lected randomly from the available data vectors. In order to produce a reliable sepa-
ration, a number of factors must be considered: 

1. The training set must be representative of the data set. 
2. The training set must be large enough. 
3. The training set must not contain vectors that are contradictory, that is, vectors 

with identical components that belong to different classes. 
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Problems with training of neural networks include: 

1. Different weights may be obtained from different training sets. 
2. Different weights may be obtained by altering the order in which the vectors 

in the training set are presented to the learning algorithm. 

A separate set of vectors should be used to test the accuracy of the model once 
it is obtained. A number of measures can be used to determine accuracy: 

Sensitivity = # classified correctly as positive/* of true positives 
Specificity = # classified correctly as negative/* of true negatives 
Accuracy = # correctly classified/total number 

For example, assume we are trying to classify patients into presence or absence 
of CAD, and we have the following distribution in our test sets: 

Number of patients with CAD: 56 
Number of patients without CAD: 63 
Number of patients with CAD classified correctly: 51 
Number of patients without CAD classified correctly: 60 

We obtain the following measures of accuracy: 

Sensitivity = 51/56 = 0.91 
Specificity = 60/63 = 0.95 
Accuracy = 111/119 = 0.93 

In classification problems, if the training set is changed to improve sensitivity, it is of-
ten at the expense of specificity, and vice versa, as a shift in the decision surface may 
improve the classification in one category at the expense of the other. Often ROCs 
(receiver-operator curves) are used to analyze the balance between sensitivity and 
specificity. An ROC curve is shown in Figure 3.5. The y-axis is sensitivity, and the jr-axis 
is 1 - specificity. The goal is to try to find a combination that is as close as possible to 
the upper left-hand corner of the graph. 

3.3.1.2 Selection of Learning Algorithm. Selecting an appropriate learning 
algorithm depends on the nature of the problem and the type of data involved. Al-
though many learning algorithms may produce results, remember that there is no one 
answer in defining classification functions. Some factors to consider are: 

1. Convergence properties 
2. Stability 
3. Accuracy in classifying new cases 
4. Ability to interpret results 

In the next chapter, we will compare these factors in a number of different learning al-
gorithms. 

3.3.2 Unsupervised Learning 

In unsupervised learning, also called learning without a teacher, we do not have 
the advantage of having data of known classification. We often do not even know how 
many categories exist. The general idea behind unsupervised learning is to find a mea-
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Sample Sensitivities and Specificities 
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Figure 3.5 ROC Curve, x: (1 - specificity), y: sensitivity. 

sure of similarity that can be used to determine which pattern vectors are "closest" 
to other pattern vectors; hence the name "clustering" is often used as the data will 
tend to group in natural clusters. This phenomenon is easy to observe in two dimen-
sions by simply plotting the data points to determine if natural clusters are found. 
It is even possible in three dimensions if good graphical displays are available. How-
ever, for higher dimensions, an algorithm must be used to detect the multidimensional 
clusters. 

Consider as an example our two-category problem of presence or absence of 
CAD, but for simplicity we will assume we have only the following two variables avail-
able from the exercise treadmill test (ETT): maximum ST depression in millimeters 
(ST) and change in systolic blood pressure from the beginning to the end of the test 
(ΔΒΡ). The values are given in Table 3.1. These data are plotted in Figure 3.6. We can 
identify two clusters visually. If we did not have the visual aid, that is, if this were a 
higher dimensional space, what distance measure, also known as metric, would we use? 
The most straightforward is the Euclidean distance 

d{x,y) = [(xl-y1)
2+(x2-y2f] 2-11/2 (3.4) 
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Table 3.1 Two-Dimensional Vectors for 
Identification of CAD 

Vector ST Depression 

2.5 
0.0 
0.5 
2.0 
1.5 
1.5 
0.0 
3.0 

ΔΒΡ 

5 
25 
30 
10 
- 5 
35 
50 
10 

60 

a. 

10 

0 0.5 1 

-10 -

ST 

Figure 3.6 Plot of Change in Systolic Blood Pressure (BP) versus Maximum 
ST Depression (ST). 



Section 3.5 ■ Summary 55 

where x and y are two-dimensional vectors. Several other distance measures could be 
used, including the following: 

City Block 
d(\,y) = \x1-y1\ + \x2-y2\ (3.5) 

Maximum Value 
d(x, y) = max {l*i - yx\, \x2 - y2\) (3.6) 

We already saw a metric for binary vectors in Chapter 2, the Hamming distance. 
A metric must satisfy the following: 

1. d(x, y ) ä O and d(x, y) = 0 if and only if x = y (positivity) 
2. d{x, y) = d(y, x) (symmetry) 
3. d{\, y) + d(y, z) > d(x, z) (triangle inequality) 

These definitions are easily extended to vectors of any dimension. In Chapter 5, we will 
analyze a number of approaches that use these and other metrics and that also use dif-
ferent approaches for classifying data. 

The choice of a suitable metric is not always straightforward. Some metrics are 
better suited to the data set than others. For example, the Euclidean distance gives the 
shortest geometrical distance between two points, the city block distance gives the dis-
tance between two points following a right-angle-only path, and the maximum value 
distance measures the distance between the two vector components that are furthest 
removed from each other. Another factor to consider is that scaling of the data can re-
sult in entirely different clusters than the original data set. 

3.3.3 Causal Models 

Causal models imply that a cause and effect relationship is used in the reasoning 
process. In Part II of this book we will discuss artificial intelligence approaches which 
use causal reasoning. In general, neural network models do not use causal reasoning as 
relationships between variables, and outcomes are learned by associating certain val-
ues of variables with outcomes. These relationships do not tell us anything about cause 
and effect. However, the discovery of association between ranges of values and out-
comes can lend clues for further investigation. 

3.4 INTERPRETATION OF OUTPUT 

What type of output do we expect from a classification neural network? The primary 
output is the assignment of the input vector to the correct classification. However, it 
may be possible to learn more than this from the process. The weights associated with 
the input nodes indicate the strength of the contribution of the variable toward the 
classification decision. In networks with all nodes interconnected, it is difficult to in-
terpret these weights. With some algorithms, the weight interpretation is much more 
straightforward. This is one of the issues we will investigate in Chapters 4 and 7. 

3.5 SUMMARY 

We have seen the importance of feature extraction in the development of classification 
networks for use as input to both supervised and unsupervised algorithms. In biomed-
ical problems, it is particularly important to include all data types, especially nontex-
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tual data such as images and time series. Supervised learning, in which the correct 
classification of the data sets is known, is the most widely used approach for the 
development of classification systems. In some cases, however, correct classification 
for training data is not available, and unsupervised learning is the only option avail-
able. In either approach, two phases are involved in neural network development: the 
training phase and the testing phase. Only after the completion of these two steps can 
the model be used for classification. 

EXERCISES 

1. For the seven variables given in the example for diagnosis of CAD, given the informa-
tion that the importance of these parameters is how they change during the ETT, how 
could the number of variables be reduced? Give a list of the reduced variable set. 

2. Compute the Euclidean distance between x1 and x2 and x1 and x3 from Table 3.1. Do 
the same calculations for the city block metric and the maximum value metric. For the 
given data set, which of these metrics appears to make the most sense? 

3. Using the graph in Figure 3.4 based on the data in Table 3.1, assuming there should be 
two categories, write down the vectors that belong to each category. Is there any way to 
tell which group is the CAD group? 

4. Using your classification from exercise 3, divide the eight data vectors into a training 
set and a test set. Can you determine a linear D(x) based on the training set that will 
separate all vectors in the training set? Does it classify all data in the test set correctly? 

5. Is it possible to change the continuous variables in Table 3.1 into binary variables? If 
so, how? Do you think the classification would work as well with binary variables? 

6. Show that the Euclidean distance, the city block distance, and the maximum value dis-
tance meet the conditions for metrics. Does the Hamming distance also fulfill these 
requirements? 
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Supervised Learning 

4.1 DECISION SURFACES 

In Chapter 1 we discussed pattern recognition and the idea of decision surfaces and 
discriminant functions. The basic idea in supervised learning from a mathematical 
point of view is to separate a set of n-dimensional vectors into m classes using a 
decision surface or discriminant function. In supervised learning, we know the class-
ification of the data, so the objective is to find a function that will classify the data 
correctly. We will need to consider a number of subcategories of discriminant func-
tions. 

The most straightforward case is the division of n-dimensional vectors into two 
categories by means of a single discriminant function. The simplest function is linear. 
Sets of vectors that can be successfully separated by a linear discriminant function 
are said to be linearly separable. Define a discriminant function D(\) where x is an 
n-dimensional vector and w is an n-dimensional weight vector. Then: 

n 

£>(x) = w0 + wxxx + w2x2 + . . . + wnxn = w0 + ]T WjXi = w0 + wrx (4.1) 
( = 1 

where 

n , , _ Γ> 0 if x ε class 1 
' < 0 if x ε class 2 

Since the comparison is made to zero, the constant HO is not relevant and will be omit-
ted in some of the following discussions. All boldface, lowercase letters are assumed to 
be column vectors; thus x in Eq. (4.1) is a column vector with n components, wr is a 
row vector, and the result of the multiplication wTx gives a scalar value for D(x), which 
is a function of the n-dimensional vector x = [xx, . . . ,x„]. 

In the training phase, we know the values of the components of all vectors x 
and we know the classification for each vector x. The only components we do not know 
are the values for w. It is the task of the learning algorithm to determine these values. 
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4.2 TWO-CATEGORY SEPARATION, LINEARLY 
SEPARABLE SETS 

4.2.1 Fisher's Linear Discriminant 

One of the first methods for constructing decision functions by using supervised 
learning was Fisher's Linear Discriminant (Duda and Hart, 1973). This is a statistical 
procedure that requires the definition of a criterion function 7(w) which must be max-
imized. The concept of a criterion function will be repeated in many of the methods we 
will see later in this chapter. The idea behind the discriminant function is to project the 
n-dimensional samples onto a line v = wrx, as illustrated in Figure 4.1. The samples 
from the two classes will be mixed together. The orientation of the line is then changed 
in an attempt to separate the sample into the proper categories. The decision surface, 
D(x), is a line that is perpendicular to the projected line that divides the classes. The 
mathematical formulation requires the following definitions: 

Sample Mean m, = (l/fc,)X x (4.2) 
χεΧ,-

Projected Mean m,· = -(1/Λ,·) ^ y = (l/jfc,·) ^ wrx = w^ni; (4.3) 
yeYi χεΧ,-

where Xi is the set of all vectors in class i and kt is the number of samples in 
class i. Thus 

Iwii - m-A = wrl(mi - m2)l (4.4) 

The scatter for projected samples in class i is defined as: 

s? = Σ (y ~ m,)2 (4.5) 
yeYi 

The Fisher Linear Discriminant is that linear function wrx for which the criterion func-
tion /(w) is maximum where 

J(w) = Imi - m2l2/(ii2 + s2
2) (4.6) 

The objective is to obtain / as a function of w. 
The scatter matrices are defined as: 

Scatter Matrix S, 

St = X (x - m,)(x - m,.)T (4.7) 
xeXi 

Within Class Scatter Sw 

SW = S1 + S2 (4.8) 

Between Class Scatter SB 

SB = (m! - mzXm! - m2) r (4.9) 

Then 

*< = Σ (w7% - wrm,)2 = wT5,w (4.10) 
χεΧι 
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Linear Discriminant Which Does Not Separate Samples 

Linear Discriminant Which Does Separate Samples 

Figure 4.1 Projection of N-Dimensional Points to One Dimension. 

The criterion function can be written as 

/(w) = w%w/(wXw) (4.11) 

This is the Rayleigh quotient of mathematical physics. The weight vector w is obtained 
by solving for the eigenvalues: 

w = Sw-l(mi - m2) (4.12) 

This produces the Fisher Linear Discriminant, which is the linear function with the 
maximum ratio of between-class scatter to within-class scatter. 

Additional details on linear discriminants can be found in Duda and Hart (1973). 
Other types of discriminant functions are discussed in Section 4.2.4 of this chapter. 
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Note that for methods that do not project vectors onto a line, but operate in the di-
mension of the feature vector, the decision surface D(\) will not be a line but a hyper-
plane. If the decision surface is nonlinear, the function will be a hypersurface. 

4.2.2 Gradient Descent Procedures 

Before discussing specific methods, we will restate the problem in a slightly dif-
ferent manner. Recall that our objective for vectors in the training set is to classify all 
samples correctly by finding a set of weights that produce an appropriate decision 
equation. Thus we want to solve the inequalities 

wrx > 0 if x ε class 1 ,.«„■. 
T ( 4 · 1 3 ) 

w x < 0 if χ ε class 2 
We can simplify this statement if we normalize the vectors by replacing all vectors in 
class 2 by their negatives. The problem is then to solve the set of inequalities: 

wrx > 0 for all x in the training set (4.14) 

One method of proceeding is through the use of gradient descent procedures 
(Duda and Hart, 1973). The gradient descent procedure minimizes a criterion function 
J(W) where W is a solution matrix. 

Gradient Descent Algorithm 
Assign arbitrary values to Wj the initial weight matrix. 
Compute VJfWj), the gradient, which gives the direction of steepest descent. 
At step k + 1, adjust the weights according to 

Wk+ i = Wk - pk VJ(W]J where pk is a scale factor (4.15) 

Repeat until a minimum is found. 

In the next section we will see that the perceptron algorithm is similar to the gra-
dient descent algorithm. 

4.2.3 Perceptron Algorithm 

The perceptron algorithm follows the same approach as the gradient descent pro-
cedure except that the criterion function is different (Rosenblatt, 1962; Nilsson 1965). 
The perceptron criterion function is: 

J(w) = £ ( - " r y ) (4.i6) 
yeY 

where /(w) is the set of samples misclassified by w. Weight adjustments at the k + 1 
step are made by the following: 

w*+i = wfc + p f e ^ y (4.17) 
yeY 

A special case of the perceptron is the fixed increment rule: 

pfc = 1, v/\ is arbitary 
Wfc+i = wfc + y*. (4.18) 

In the variable increment rule, pk can be adjusted. 
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4.2.4 Relaxation Procedures 

A modification of the gradient descent procedure is the relaxation procedure 
(Motzkin and Schoenbert, 1954). We define 

/(W) = £ (wry)2 (4.19) 
yeY 

where / is again the set of misclassified samples. 

Relaxation Algorithm 
Select the initial weights Wj arbitrarily. 
Adjust weights at step k + 1 according to 

wk+/ = wk + Pk Σ (b-wTy)y/(||y||)2 (4.20) 
yeY 

where wTy ^ b for all samples. 

The vector b in the preceding algorithm is a boundary that provides a cushion to pre-
vent the decision surface from coming too close to the edge of the decision region; that 
is, no samples are allowed to fall within a distance b of the decision surface. 

4.2.5 Potential Functions 

The idea behind potential functions comes from the study of electricity (Aizer-
man, Braverman, and Rozonoer, 1964; Tou, 1974; Young and Calvert, 1974). The basic 
concept is that each vector x, is thought of as a point in space where an electrical 
charge qt could be placed. The charge will be positive if x; is in class 1 and negative if 
x, is in class 2. The resultant electrostatic potential represents a decision surface. The 
potential due to n charges is 

D(x) = qiK(x,xi) (4.21) 

The potential function K(x, x,·) of physics varies inversely with ||x - x,||, the Euclidean 
distance; however, other functions are also suitable. See Figure 4.2 for examples. The 
most suitable choices are maximum at x = x,· and decrease as ||x - x,|| approaches in-
finity. The corrected decision function is: 

D'(x) 
D(x) + K(x, xfc) if Xk is in class 1 and D(xk) < 0 
£>(x) - K(x, xk) if xfc is in class 2 and D(x*) > 0 (4.22) 
D(x) otherwise 

The actual algorithm is similar to the perceptron algorithm. The similarity to the fixed 
increment rule is seen through the following representation (Duda and Hart, 1973): 

If K(x, Xfc) can be represented by the expansion 

K(x, Xfc) = J y,(x) y,(xfc) = yfcry (4.23) 
*-=i 

where y = y(x) and yfc = y(xk) and n is the dimension of the vector. Substituting into 
Eq. (4.21) 

D(x) = wry, where (4.24) 
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Figure 4.2 Positive and Negative Potential Functions. 

w = Σ<ν* (4·25) 
i = l 

The weight adjustments to go from D(x) to D'(\) are then 

w = 
w + y* if y*; is in class 1 and wryfc < 0 
w - yk if yfc is in class 2 and wry/t > 0 (4.26) 
w otherwise 

4.3 NONLINEARLY SEPARABLE SETS 

In many cases, it is not possible to find a linear decision function D(x) that can suc-
cessfully categorize all vectors. If this happens, there are two alternatives: 

1. Find a nonlinear function that will separate the functions. 
2. Settle for a decision surface that misclassifies some of the vectors. 

4.3.1 Nonlinear Discriminant Functions 

The most straightforward generalization is from the Hnear discriminant function 
to the quadratic: 

D(x) = wo + Σ wpct + ΣΣ Wipe?,, (4.27) 

In the more general form: 

D(x) = Σ wjiix) = wry (4.28) 

where w is an n-dimensional weight vector and v,(x) is a set of functions of x. 
As an example, consider the quadratic discriminant 

D(x) = ΗΊ + w2x + H-3*2 (4.29) 
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y = 
1 
X 

be2 
w r = [ΗΊ W2 W3] (4.30) 

4.3.2 Hypernet, A Nonlinear Potential Function Algorithm 

The method used in Hypernet is a modification of the potential function ap-
proach to pattern recognition (Cohen et al., 1986). Rather than using the Euclidean 
distance formula, the potential function is used: 

CO 

Ρ(χ,χΙί) = ^\ίΦί(χ)Φί(χι,) (4.31) 
ί=1 

for k = 1,2,2> . . . , where Φί(χ) are orthonormal functions and λ, are nonzero real 
numbers. The orthogonal functions of mathematical physics may be used as potential 
functions (Young, 1974). Pt is computed by substituting the values from the first fea-
ture vector for case Ι,Χχ. Subsequent values for Pk are then computed by 

Pk = Pk-i + rk P(x, xk) where (4.32) 

rk = 

1 If Λ < 0 and class 1 
- 1 If F , > 0 and class 2 (4.33) 

0 If Pi > 0 and class 1 or Pt < 0 and class 2 

The orthonormal functions can in fact be replaced by orthogonal functions, since mul-
tiplication by a normalizing factor does not affect the final relative outcome. The func-
tions used in Hypernet are chosen from the set of multidimensional orthogonal func-
tions developed by Cohen, represented by the general class (Cohen et al., 1986): 

C <ΧΛ x ) = V* + y (-1) ("» ~ k)l y y y y 

j . xf^[a(n,iP) + vip] ( 4 3 4 ) 

p = l V'P 

where m is the dimensionality of the data, ab i = 1, . . . , k are parameters that may 
be arbitrarily selected, A is the normalization constant, and vh i = 1, . . . , m are as-
signed values corresponding to the components of the first feature vector. Note that 
while high-order equations can be obtained using this method, in general only linear 
and second-order terms are used to prevent overfitting of the decision surface (a sub-
ject that will be discussed in Chapter 6). 

Hypernet Algorithm 
Read in values for input nodes; 
Compute value P^ 
Until no changes 

Compute Pi 
IF Pi > 0 and class 1, no change 
IF Pi < 0 and class 2, no change 
IF Pi > 0 and class 2, orfi<0 and class 1, then adjust P t using Eqs. (4.32) and 
(4.33) 

Output decision hypersurface equation with weighting factors, D(x) = Pjfx). 
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4.3.3 Categorization of Nonlinearly Separable Sets 

4.3.3.1 Minimum Squared Error Procedures (MSE). Minimum squared er-
ror procedures use all samples instead of only the misclassified samples (Duda and 
Hart, 1973). The method works if the set is not linearly separable but does not neces-
sarily produce a separating surface if they are separable. The objective is to solve the 
set of equations 

w'y,· = b, (4.35) 

where b, are arbitrary positive constants. This set of linear equations can be repre-
sented by an m X n matrix: 

Y = 

yi 

Un 

(4.36) 

where each y is an «-dimensional vector, b is an «-dimensional constant vector, and 
there are m samples. We then get the matrix equation 

Yw = b, or 

w = Y-1b 

using the pseudoinverse 
- 1 V T Ψ = (Υ1Υ)~Ύ 

(4.37) 

(4.38) 

(4.39) 

However, Y is rectangular with more equations than unknowns (i.e., w is overdeter-
mined) so no unique solution exists. The method thus attempts to minimize the error 

E = Yw - b 

The criterion function is 

The gradient is 

/(w) = ||Yw - b|| = 2(wry, - b,)2 

V/(w) = Σ 2(w 7y - b.)y/ = 2Yr(Yw - b,) = 0 

(4.40) 

(4.41) 

(4.42) 

With the proper choice of b, this method is related to the Fisher Linear Discriminant. 
Other MSE procedures include the Widrow-Hoff procedure (Widrow and Hoff, 1960) 
and the stochastic approximation (Yau and Schumpert, 1968). 

4.3.3.2 Ho-Kashyap Procedure. The Ho-Kashyap procedure also works for 
nonseparable sets, but it has the advantage of producing a separating vector if separa-
ble (Ho and Kashyap, 1966). 

If the sets are linearly separable, there exist w and b such that 

Yw = b > 0. (4.43) 

The criterion function is defined as 
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/(w, b) = ||Yw - bf (4.44) 

The criterion function is minimized subject to gradient descent 

/w = 2YT(Yw - b) (4.45) 

Jb= - 2 ( Y w - b ) (4.46) 

Ho-Kashyap Algorithm 

Choose arbitrary bj > 0 

bk+7 = bk + 2pek
+ where (4.47) 

ek = Ywk - bk (4.48) 

ek
+ = % (ek + |ek|; (4.49) 

Wk = Y ^ t where Yf is defined in Eq. (4.39). (4.50) 
The nonseparable case can also be configured as a linear programming problem 

(McKinsey, 1952). 

4.4 MULTIPLE CATEGORY CLASSIFICATION PROBLEMS 

In some problems, separating vectors into two categories is insufficient. The goal is to 
consider three or more categories. If this is the case, the preceding model must be ex-
panded. Again there are two choices: 

1. Break the multicategory problem into a series of two-category problems. 
2. Construct a more complex mathematical structure for the decision function. 

4.4.1 Extension of Fisher Discriminant 

The basic idea of the Fisher Linear Discriminant for projecting n-dimensional 
samples onto a line can be extended to project n-dimensional space into c — 1 dimen-
sions where n^c. The description given in Section 4.2.1 can be generalized as follows: 

Sw = Σ Si (4·51) 
i= l 

where 5; is defined in Eq. (4.7). The generalization for SB as given by Duda and Hart 
(1973) is 

C 

ΞΒ = Σ nimt - m)(m,· - m) (4.52) 

where m is the total mean vector. Then 

ST = Sw + SB (4.53) 

We wind up with c — 1 discriminant functions 

yt = w/x (4.54) 

The entire projection can be written as a matrix equation 

y = WTx (4.55) 
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4.4.2 Kesler Construction 

Another method of constructing multicategory discriminant functions is the 
Kesler Construction. The following definitions are used, assuming there are c cate-
gories with vectors of dimension n: 

Dfa) = wt
Tj, i = l, . . . ,c (4.56) 

Vector x is assigned to class i if A(x) > ^ ;(x) for all i Φ j , that is, w,·7^ > w;
ryfo 

where we are assuming y is a function of x as in Eq. (4.28). 
Rewriting 

w,ry* - w;
ryfc > 0 (4.57) 

The following c - 1 samples each of dimension (c ■ ri) must be classified correctly: 

Wl 

w2 

w3 

wr 

y 
- y 
0 

y 
0 
- y ·· 

y 
0 

. 0 

0 0 

> 0 (4.58) 

Consider the following illustration of this method. Assume we have a three-
category problem, with the following vectors in each class (with Yt representing the set 
of vectors in class i): 

1Ί = {3Ίι = (1,2,1),3Ί2 = (1,1,4)} 
Yi = b-21 = (1, - 1 , -1),Λ2 = (1, - 3 , -1)} 
Ys = tVsi = (1, - 1 , -1), J a = (1, - 3 , -1)} 

Assume Wi(O) = w2(0) = w3(0) = (0,0, 0) are the initial weights for each cate-
gory. (Note that the number in parentheses indicates the ith adjustment in the weight 
vectors.) Thus we have three decision functions, glt g2, and g3. Each feature vector has 
three components. The goal is to find the g,-'s so that all vectors are classified correctly. 
We set up the first member of the sequence 

yn 
- y n 
o 

and compute the gfs: 

gi = w1
Ty11 = (0 0 0 ) (121) r = 0 

S2 = w2
ryn = (0 0 0 ) (121) r = 0 

This is an incorrect result, because gx is not greater than g2, that is, gx - g2 = 
WiTyn - w2

ryn < 0. 
Compute adjusted weight vectors: 

Wi(l) = wj(0) + y u = (121) 
w2(l) = w2(0) - y i l = ( -1 - 2 -1) 
w3(l) = w3(0) = (0 0 0) 
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Consider the second member of the sequence: 

yn 
0 

69 

-yn 
ft = a^lJV1 = (1 2 1) (1 2 1)T = 6 
g3 = (0 0 0) (1 2 1)T = 0 

This is a correct result as ft > ft. 
Compute new set of weights: 

Wl(2) = Wl(l) = (121) 
w2(2) = w2(l) = (-1 - 2 -1) 
w3(2) = w3(l) = (0 0 0) 

The next member of the sequence is: 

"y« 
- y i 2 
o 

The completion of this problem is left as an exercise. 

4.4.3 Backpropagation 

Backpropagation (Rummelhart, McClelland, and PDP Research Group, 1986) is 
a type of nonlinear gradient descent procedure. It can be used for multicategory clas-
sification. The objective is to minimize the error criterion 

/ = (1/2)[Σ(Τ, - A)2] 

where Γ, is the target result for decision i and Dt is the current value. 

(4.59) 

Backpropagation Algorithm 
Initialize 

Set all weights w and ω and thresholds Θ and φ to small random numbers. 
Compute activation levels: 

Ό(χ) =Έ(Σ(ω y(x, θ) - φ)) where 

y = FfSfwfx - Θ;; and 

F(a) = l/(l-exp(-a)) 

Adjust weights according to 

wk+7 = wk + ηδ(χ) 

ok+/ = <»k + τ\ξ(γ) 

where 

8i(x) = xi(l - xO 8Tw 

tyj) = Djfy; (1 - Djfyjj (Tj - Oi(y)) 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

(4.66) 

η is the learning rate. 
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4.5 RELATIONSHIP TO NEURAL NETWORK MODELS 

In this chapter, we have discussed supervised learning techniques but have not men-
tioned neural networks. What is the connection? The first neural network, and the first 
supervised learning algorithm, was the perceptron algorithm described earlier. In its 
linear form, a two-layer neural network represents the perceptron algorithm, as did the 
original neural networks in the 1950s. In fact, the linear approaches discussed here are 
equivalent to the two-layer networks with all their inherent drawbacks. The nonlinear 
approaches, however, overcome these problems, as do the multilayer networks. Many 
of the approaches described have been used in neural network learning, including gra-
dient descent procedures (backpropagation) and potential functions (Hypernet). As 
an example, consider backpropagation, which was described earlier in terms of a mul-
ticategory nonlinear learning algorithm. When stated in neural network terminology, 
we have the following algorithmic form, similar to the neural network algorithms pre-
sented in Chapter 2 (Fu, 1994): 

Assign Connection Weights 
Set all Wy and threshold values Θ, to small random values. 

2 < i < n , J < j < m 

Initialize 
The activation of an input layer node L· set to the instance presented to the network. 
For the hidden and output layers, the activation is 

O, = F(Z w;j (Oi - 90) (4.67) 

where Wy is the weight from an input unit Oi5 9j is the node threshold, and F is a 
sigmoid function. 

Έ(α) = 1/(1 - exp(-a)). (4.68) 

Iterate Until Convergence 

At time t 

Wjift + 1) = wjift; + AWjj (4.69) 

Awjj = η δ Ρ ί (4.70) 

8j = Oj(l - Oj)(Tj - Oj) for output units (4.71) 

8j = Oj(l - Oj) Σ 8k wkj for hidden units (4.72) 

where 8k is the error gradient at unit k to which a connection is made from hid-
den unit). 
η is the learning rate (0 < η < 1) 

This process is repeated until convergence in terms of the selected error criterion. 

What, then, constitutes a neural network model? Neural network algorithms are 
based on some aspect of the biological nervous system, with nodes representing the ac-
tivity of individual neural firings and connections representing the biological neural 
network structure. These structures lead to the mathematical formulations in which the 
learning methods described here can be used. A diagram of the backpropagation 
three-layer network is shown in Figure 4.3. 
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Figure 4.3 Backpropagation Network with Four Input Nodes. 

Historically, research in neural networks has inspired work in learning algo-
rithms. For example, Rosenblatt's original work in the photoperceptron (Rosenblatt, 
1962) is directly related to the Parzen window approach (discussed in Chapter 15), 
which is also closely aligned with potential functions. 

4.6 COMPARISON OF METHODS 

4.6.1 Convergence and Stability 

Some of the methods we have described have convergence proofs, such as the 
perceptron algorithms, whereas others converge only under specified circumstances. 
Some of the descent learning algorithms may converge to local minima rather than ab-
solute minima. Some algorithms, such as backpropagation, may result in chaos or os-
cillatory behavior and may fail to converge. Note in Eq. (4.71) the presence of the lo-
gistic equation Aan(l — an), which can produce chaotic solutions depending on the 
value of A. Chapter 8 will discuss convergence and stability for the methods described 
above in more detail. 

4.6.2 Training Time 

Training time depends on the algorithm, the network structure, the number of in-
put nodes, and the number of categories. Methods such as backpropagation may have 
very long training times compared to other methods, such as the potential function ap-
proach. Lengthy training time is less of a problem than convergence or stability con-
siderations, especially now as computer speeds have greatly increased and will appar-
ently continue to do so. 
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4.6.3 Predictive Power 

In biomedical applications, the predictive power of a result is of utmost impor-
tance. The decision surface generated by the methods described must be tested on an 
independent data set to determine their effectiveness in reaching accurate decisions. 
Four measures are often used in medical applications to measure accuracy and predic-
tive power: 

Pc = number of positive cases correctly classified 
P/ = number of positive cases incorrectly classified 
PT = Total number of positive cases 
Nc = number of negative cases correctly classified 
Nj = number of negative cases incorrectly classified 
NT = Total number of negative cases 

Then 

Sensitivity = PCIPT (4.73) 

Specificity = NC/NT (4.74) 

Positive predictive value = PTl(Pc + Ni) (4-75) 

Accuracy = (Pc + NC)I{PT + NT) (4.76) 

4.7 APPLICATIONS 

In the last decade, neural networks have been applied to numerous medical problems. 
An example is shown using the Hypernet neural network. 

4.7.1 Single-Category Classification 

Many medical decision-making problems rely on multiple parameters. The neural 
network approach is useful not only in combining parameters but also in assigning 
weights to each parameter that indicate their relative importance. 

As an example, consider the analysis of exercise treadmill testing (ETT) (Cohen, 
Hudson, and Deedwania, 1985). Parameters that are typically recorded are shown in 
Table 4.1. In addition to recorded parameters, computed parameters have previously 
been found to be useful. These include: 

Change in blood pressure from beginning to end of test 
Change in heart rate from beginning to end of test 
Product of heart rate and systolic blood pressure at end of test (double product) 

Initially, we will consider this to be a two-category problem: presence or absence 
of coronary artery disease (CAD). The results of the cardiac catheterization are used 
to determine the correct classification: 0 vessel disease will be class 1, and 1,2, or 3 ves-
sel disease will be class 2. Data of known classification are divided into a training 
set and a test set. After training, the neural network determined that the following 
parameters should be used in the decision surface: 

Xx = maximum ST depression 
x2 = percentage change in heart rate from beginning to end of test 



Section 4.7 ■ Applications 73 

TABLE 4.1 Parameters Pertaining to Diagnosis of 
Coronary Artery Disease (CAD) 

Identification number 
Age 
Date of cardiac catheterization 
Results of cardiac catheterization (0,1,2, or 3 

diseased vessels) 
Date of ETT resting heart rate 
Resting blood pressure 
Resting ECG results (normal, abnormal) 
Time of angina 
Heart rate at time of angina 
Blood pressure at time of angina 
Time of 1 mm ST depression 
Heart rate at time of 1 mm ST depression 
Blood pressure at time of 1 mm ST depression 
Maximum ST depression 
Total duration of ETT 
Heart rate at end of ETT 
Blood pressure at end of ETT 
Total duration of chest pain 
Total duration of ST depression 
Reason for stopping ETT 

x3 = percentage change in blood pressure from beginning to end of test 
Λ:4 = double product 

The neural network diagram for this example is shown in Figure 4.4. Although this fig-
ure is similar to the backpropagation network, in the hidden layer only two nodes at a 
time interact whereas in the backpropagation network all nodes are connected. Also, 
there are direct connections from the input to the output layer in Hypernet. 

4.7.2 Multicategory Classification 

In reality, the problem described here is a four-category classification problem, 
with the following categories: 

class 0: 
class 1: 
class 2: 
class 3: 

No CAD 
1-vessel disease 
2-vessel disease 
3-vessel disease 

The approach taken by Hypernet is to develop separate decision surfaces for each de-
cision. The classifications of interest are the following: 

Ovs. 1 
Ovs.2 
Ovs. 3 
lvs.3 
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Figure 4.4 Classification of Coronary Artery Disease Using Hypernet. 

The remaining combinations, 1 vs. 2 and 2 vs. 3, are omitted because of the difficulty in 
distinguishing these cases clinically. The four preceding parameters are again selected 
during the training phase. Evaluation of this model produces measures of sensitivity, 
specificity, and predictive value as described earlier. For example, for the 0 vs. 3 case re-
sults are shown in Table 4.2. 

From these values, we can calculate the following: 

Sensitivity = 38/41 = 0.93 
Specificity = 7/8 = 0.88 
Accuracy = 45/49 = 0.92 
Positive Predictive Value = 41/39 = 1.05 

The decision surface that was generated by Hypernet for the 0 vs. 3 problem is: 

£>(x) = -6.3 + 3.7*i + 4.1*2 + 7.3JC3 + 4.7*4 
- 17.4*3*4 + 8.9*2*4 + l . l*i*4 + 7.1*i*3 - 0.9*2*3 (4.77) 

TABLE 4.2 CAD Results for No Disease versus 3-Vessel Disease 

Correctly Incorrectly 
Classified Classified Total 

Class 1 (0 vessel disease) 7 1 8 
Class 2 (3 vessel disease) 38 3 41 
Total 45 4 49 
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4.7.3 Reduction of Nodes 

As seen in the preceding examples, the number of contributing features has been 
significantly reduced. There are a number of reasons for limiting the number of input 
nodes. A rule of thumb is that for each node in the network, between five and ten in-
stances are required for weight training. It is therefore important not to include more 
nodes than the available data set can reliably train. In addition, the greater the num-
ber of nodes, the longer the training time, and the more likely it is that there may be 
convergence or stability problems with some algorithms. There are a number of 
processes by which node reduction can be accomplished which will be discussed in 
Chapter 6. Hypernet uses a combination of expert opinion and statistical significance 
to obtain the initial set of nodes. It then uses threshold pruning for further reduction. 

4.8 SUMMARY 

An interesting illustration of the application of neural networks to a problem in bio-
medical engineering is given by Sepulveda, Granat, and Cliquet (1997) for the devel-
opment of adaptive control of gait swing by neuromuscular electrical stimulation 
(NMES).The subject had full mobility in all limbs but had a completely paralyzed left 
leg with some sensation. Input variables came from two electrogoniometers, and out-
put consisted of variations in pulse width (PW). In the training phase, stimulation PWs 
were preset to different values until a few good swing cycles were observed. 
Goniometer and corresponding stimulation variations were presented as learning tar-
gets to the neural network. Backpropagation was used for training with a learning rate 
for the output layer of 1.1 when the number of bad outputs exceeded one-third of the 
total target outputs. The learning rate for the middle layer was set to half of this rate. 
The resulting network was shown to be useful in gait control. In addition, the network 
itself was easily adaptable to any number of stimulation channels and biomechanical 
sensors simply by adding or subtracting neurons. 

Chen et al. (1995) illustrate another interesting application of the backpropaga-
tion method in identifying gastric contractions using surface electrodes. A principal 
component feed-forward neural network was used by Sveinsson et al. (1997) to 
analyze event-related potentials from ECGs of male schizophrenic patients compared 
to normal volunteers. Principal component analysis is a method for reducing the num-
ber of features. 

A1992 article by Sabbatini lists over 100 applications of neural networks in med-
icine and biology. These applications continue to abound. Good sources of biomedical 
applications of neural networks can be found in IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on Neural Networks, IEEE Engineer-
ing in Medicine and Biology Magazine, Computers in Biomedical Research, as well as 
in numerous conference proceedings such as IEEE Engineering in Medicine and Bi-
ology Society, Artificial Neural Networks in Engineering (ANNIE), the Biomedical 
Engineering Society, and MEDINFO. 

EXERCISES 

1. Given the following vectors, compute the scatter matrices for the Fisher Linear Dis-
criminant: 
Class 1: xx

T = [2,4] x2
T = [1,-3] 

Class 2: x1
T = [-1,3] x / = [-3,2] 

2. Are the vectors in problem 1 linearly separable? Justify your answer graphically. 
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For the vectors in problem 1, classify the samples using the perceptron algorithm with 
p = 0.5 and w0

T =[11]. (The weight vector should converge within two iterations.) 
Complete the Kesler construction calculations for the example given in Section 4.4.2. 
Verify that your decision function separates the vectors. 
Given the two class problem with the following sample vectors: 

X1 = {(3,5), (4,2)} X2 = {(-2,-3), (-3,-4)} 

a. Set up the set Y to be used for the two-category fixed increment rule. 
b. Using an initial guess of wx = (1 0 0), find a separating weight vector. 
c. Write an equation for the decision surface. 
Given the set of variables collected for the example in Section 4.7, how would you go 
about reducing this number before beginning the training process? Consider eliminat-
ing irrelevant and redundant variables and combining variables. 
Comparing Figures 4.3 and 4.4, the neural network structures for backpropagation, and 
Hypernet, what are the major differences in structure? How do these differences affect 
the development of the decision surface? What effect do they have on the interpreta-
tion of results? 

REFERENCES 
Aizerman, M.A., Braverman, E.M., and Rozonoer, L.I. 1964. Theoretical foundations of the po-

tential function method in pattern recognition learning. Automation and Remote Control, 25: 
821-837. 

Chen, J.D.Z., Lin, Z., Wu, Q., and McCallum, R.W. 1995. Non-invasive identification of gastric 
contractions from surface electrogastrogram using backpropagation neural networks. Med. 
Eng. Phys. 17(3): 219-225. 

Cohen, M.E., Hudson, D.L., and Deedwania, P.C. 1985. Pattern recognition analysis of coronary 
artery disease. In A.H. Levy and B.T. Williams, eds., American Association for Medical Systems 
and Informatics, pp. 262-266. 

Cohen, M.E., Hudson, D.L.,Touya, J.J., and Deedwania, P.C. 1986. A new multidimensional poly-
nomial approach to medical pattern recognition problems, in R. Salamon, B. Blum, and M. Jor-
gensen, eds., MEDINFO 86, pp. 614-618. 

Duda, R.O., and Hart, P.E. 1973. Pattern Classification and Scene Analysis. New York: Wiley-
Interscience. 

Fu, L.M. 1994. Neural Networks in Computer Intelligence. New York: McGraw-Hill. 
Ho, Y-C, and Kashyap, R.L. 1965. An algorithm for linear inequalities and its applications. IEEE 

Trans. Elec. Comp. EC-14:1501-1514. 
McKinsey, J.C.C. 1952. Introduction to the Theory of Games. New York: McGraw-Hill. 
Motzkin,T.S., and Schoenbert, I.J. 1954. The relaxation method for linear inequalities. Canadian 

J. of Mathematics 6: 393-404. 
Nilsson, N.J. 1965. Learning Machines: Foundations of Trainable Pattern-Classifying Systems. 

New York: McGraw-Hill. 
Rosenblatt, F. 1962. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mecha-

nisms. Washington, D.C.: Spartan Books. 
Rummelhart, D.E., McClelland, J.L. and the PDP Research Group. 1986. Parallel Distributed 

Processing, Vols. 1 and 2. Cambridge, MA: MIT Press. 
Sabbatini, R.M.E. 1992. Applications of connectionist systems in biomedicine. In Lun, K.C., 

Degoulet, P., Piemme, T.E., and Rienhoff, O., eds., MEDINFO 92, pp. 418-425. New York: 
Elsevier. 

Sepulveda, F., Granat, M.H., and Cliquet, A. 1997. Two artificial neural systems for generation of 
gait swing by means of neuromuscular electrical stimulation. Med. Engr. Phys. 19(1): 21-28. 



References 77 

Sveinsson, J.R., Benediktsson, J.A., Stefansson, S.B., and Davidsson, K. 1997. Parallel principal 
component neural networks for classification of event-related potential waveforms. Med. 
Engr., Phys. 19(1): 15-20. 

Tou, J.T. 1974. Pattern Recognition Principles Reading, MA: Addison-Wesley. 
Widrow, B., and Hoff, M.E. 1960. Adaptive switching circuits. IRE WESCON Conv. Record Part 

4: 96-104. 
Yau, S.S., and Schumpert, J.M. 1968. Design of pattern classifiers with the updating property us-

ing stochastic approximation techniques. IEEE Trans. Comp. C-17: 861-872. 
Young, T.Y., and Calvert, T.W. 1974. Classification, Estimation, and Pattern Recognition. New 

York: Elsevier. 



Unsupervised Learning 

5.1 BACKGROUND 

Unsupervised learning is much more difficult than supervised learning because not 
only do we not know the correct classification of our data sets, but we often do not even 
know how many categories we should have. The first unsupervised learning approach 
was clustering, a method developed approximately forty years ago. 

5.2 CLUSTERING 

5.2.1 Basic Isodata 

In the following discussion, we will assume that we have a c-category problem 
where the value for c is known (i.e., we know how many categories exist) and that we 
have m samples to classify. For now, we also assume that the samples are one dimen-
sional. The most straightforward approach to assigning samples to the proper category 
is the Basic Isodata Procedure. 

Basic Isodata Algorithm 
Choose some initial values for the means μι, . . ., μ0. 
Classify the m samples by assigning them to the class of the closest mean. 
Re-compute the means as the average of the samples in the class. 
Repeat until no mean changes value. 

EXAMPLE: c = 2, μ% = -2, μ2 = -1 Samples = {-2, -1,3} 
Pass 1 

-2 belongs to class 1 
—1 belongs to class 2 
3 belongs to class 2 
μι = -2, μ2 = 1 
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Pass 2 
- 2 belongs to class 1 
- 1 belongs to class 1 
3 belongs to class 2 
/A] = -1.5, μ2 = 3 

Pass 3 
- 2 belongs to class 1 
—1 belongs to class 1 
3 belongs to class 2 
μχ = —1.5, μ2 = 3 (no change in means) 

5.2.2 Similarity Measures 

The objective of the similarity measure approach is to try to find natural group-
ings. We will now assume that x is an «-dimensional column vector. One similarity mea-
sure is the normalized inner product 

, ( χ , χ ' ) = χτχ'/(||χ||||χ'||) (5.1) 

where s(x, x') is invariant to rotation and dilation but is not invariant to translation or 
linear transformations. If the vectors are binary-valued, then xTx' represents the num-
ber of attributes shared by x and x', and ||x|| ||x'|| is the geometric mean of the number 
of attributes possessed by x and x' since ||x|| ||x'|| = (xTx x'Tx')1/2. 

For example, if xT = (1 0 0 1 1) and x'T = (1 1 0 1 0), then xT x' = 2 and 
||x|| ||x'|| = 3. Other similarity measures include: 

Fraction of Shared Attributes 

s(x, x') = xTx'/n where n is the dimension of the vector (5.2) 

Ratio of Shared Attributes to Number Possessed by x or x' (Tanimoto Coeffi-
cient) 

s(x, x') = xTx7(xTx + x'Tx' - xTx') (5.3) 

5.2.3 Criterion Functions 

Criterion functions measure the quality of the partition of the data. The objective 
is to find a partition that extremizes a criterion function (i.e., either maximizes or min-
imizes). We have previously seen criterion functions in Chapter 4 in conjunction with 
supervised learning. 

5.2.3.1 Sum of Squared Error Criteria. The objective of the sum of squared 
error criteria is to minimize /, the criterion function. We make the following defini-
tions: 

ki = number of samples to be classified in the set Xt 

mi = (Vki)X*i ( 5 · 4 ) 

xeXj 

J = l l h - m # (5-5) 
1 = 1 xeJQ 
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This approach measures the variance from the center of the cluster represented by the 
current mean. It works well on compact clusters. If there is a large difference in the 
number of samples in each cluster, a partition that splits a large cluster is favored over 
one that leaves it intact. This problem is made worse by the presence of outliers. 

5.2.3.2 Minimum Error Criteria. This approach is similar to the sum of 
squared error criteria but with a different criteria function: 

J=l/2^klsl (5-6) 
( = 1 

whereSi = (l/k?)^ £ ||x - xf (5.7) 
χεΧί χ'εΧι 

5.2.3.3 Scattering Criteria. In Chapter 4, we defined the scatter matrix in Eq. 
(4.7). We can similarly define the scatter matrix for the ith cluster 

5,· = X (x - m,)(x - m,) r (5.8) 
xeXi 

We can define the within-cluster scatter Sw and the between-cluster scatter SB accord-
ing to Eqs. (4.8) and (4.9). The total scatter is 

ST = SW+ SB (5.9) 

We can then define two criteria: 

Determinant Criterion 

/ = |SW| (5.10) 

Invariant Criterion 
This criterion is invariant to linear transformations: 

trSw~1SB = fj\i (5.11) 

where λ., are the eigenvalues of 5W
_1SB, tr is the trace (sum of diagonal elements), and 

n is the dimensionality of the vectors. 

5.2.3.4 Iterative Optimization. Any of the above criteria can be used in an 
iterative optimization procedure. 

Iterative Optimization Algorithm 
Select a criterion function. 
Find sets that extremize criterion function (solve by exhaustive enumeration). 

(Note: There are cn/c ways of partitioning n elements into c subsets!) 
Alternate Algorithm 

Select a criterion function. 
Find a reasonable initial partition. 
Move samples if the move will improve the value of the criterion function. 

How does this approach compare to the Basic Isodata Algorithm discussed earlier? 
Basic Isodata waits until all m samples have been reclassified before updating. Itera-
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tive optimization updates after each sample. The latter is more susceptible to local 
minima. 

5.2.4 Hierarchical Clustering 

Hierarchical clustering uses m samples and starts with c clusters. A sequence of 
partitions are made: 

1. m clusters, 1 sample/cluster 
2. m-1 clusters 

n. 1 cluster, n samples 

At level k, c = m - k + 1. 
At some level, every two samples will be in the same cluster. If two samples are 

together at level k, they will remain together at higher levels. There are two methods: 
agglomerative (bottom-up) starts with m singletons, and divisive (top-down) starts with 
1 cluster. 

Basic Agglomerative Clustering Algorithm 
Initialize: Let ξ = n, and X = fxj i = 1,. . ., m. 
Ι/ξ = estop. 

Find nearest pair of distinct clusters, say X; and Xj. 
Merge Xj and Xj, delete Xj, decrement ξ by one. 
Repeat. 

The procedure terminates when the specified number of clusters has been ob-
tained. 

5.2.5 Metrics 

In the above procedure, it is necessary to determine distances between clusters. 
We will first consider distance measures in two dimensions. To qualify as a distance 
measure, or metric, between two points, the following must hold: 

d(x, y) > 0 and d(x, y) = 0 if and only if x = y (positivity) (5.12) 

d(x, y) = d(y, x) (symmetry) (5.13) 

d(x, v) + d(y, z) s d(x, z) (triangle inequality) (5.14) 

The most common distance measure is the Euclidean distance: 

d(x, y) = [(xi - 3Ί)2 + (X2 - y2)
2]0-5 (5.15) 

Other common distance measures are the city block distance, also known as the ab-
solute value metric: 

d(x, y) = \xx - Vi| + \x2 - y2\ (5.16) 

and the maximum value metric: 
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d(x, v) = max {^ - Vi|, \x2 ~ y2|} (5.17) 

These metrics can be generalized to higher dimensions. 
Some measures that are commonly used to determine the distance between clus-

ters are: 

x'll (5.18) 

x'll (5.19) 

D^{Xb Xj) = (l/n^j) Σ Σ ΙΙχ-χΊΙ (5·2°) 
χεΧί xeXj 

Dmean(Xi, Xj) = llm,· - m j (5.21) 

where || || indicates the Euclidean distance. One of the best-known clustering algo-
rithms, nearest neighbor, uses Dmin as a distance measure. In terms of graph theory ter-
minology, the algorithm produces a minimal spanning tree by making an edge between 
the nearest pair of nodes. The furthest neighbor algorithm uses £>max and adds edges 
between every pair of nodes in the new cluster. The diameter of a cluster is the largest 
distance between a pair of points. Both of these approaches are very sensitive to out-
liers. £>avg and £>mean can be used as compromises. Figure 5.1 shows the classification of 
the same data sets using nearest and furthest neighbor algorithms. 

Statistical nearest neighbor methods are discussed in Chapter 15. A number of 
fuzzy clustering techniques have also been developed. These will be discussed in Chap-
ter 16. 

For detailed treatment of the topics in Section 5.2, see Duda and Hart, 1973; Tou, 
1974; Young and Calvert, 1974. 

5.3 KOHONEN NETWORKS AND COMPETITIVE LEARNING 

Kohonen developed the self-organizing feature map in 1981 and demonstrated how it 
could be implemented as a neural network (Kohonen, 1988, 1990; Lau, 1992). The 
Kohonen network is shown in Figure 5.2. It consists of n input nodes that represent an 
n-dimensional binary input vector. The network has c output nodes that represent c de-
cision regions. Every input node is connected to every output node. The objective is to 
group input vectors into c classes. The weight vector w7> ;' = 1, . . . , n represents the 
weights associated with the input vector's connection to node;; thus each w; has n com-
ponents. If these column vectors are arranged in a matrix, we have an n by c matrix for 
all the weights in the network. 

The algorithm performs clustering using a similarity measure on a winner-take-
all basis. The node with the largest value is the winner. Only this node will generate an 
output of 1. All other nodes generate an output of 0. 

Initially, the weights are chosen randomly. The idea of selecting a winning node 
was first introduced by Carpenter and Grossberg (1987) in their work on competitive 
learning. Although there is only one winning node, the weights of neighboring nodes 
are also modified. The output of each node acts in an inhibitory fashion on other nodes 
but is excitatory in its own area. This moderation of competition is called lateral inhi-
bition, a concept that derives from biological neural networks. The algorithm is similar 
to the A>means clustering algorithm discussed in Chapter 16 as an example of the min-
imum squared error approach. 

Dmin(Xi, Xj) - ™JA ||x 
XlXEAj 

A»aÄ^) = X , l | x 
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Original Points 

Nearest Neighbor 

Furthest Neighbor 

Figure S.l Nearest and Furthest Neighbor Clustering. 

Since the winner's weight generates the largest dot product, its weight vector is 
closest to the input vector. The learning process makes the winning node even more 
similar to the input pattern. The network uses single-pass learning rather than multi-
pass feedback. After the training phase, the network operates by finding the winning 
node but does not modify the weights. 

Kohonen Competitive Learning Algorithm 
Initialization 

Initialize weights to small random values. 
Activation 

The value for output node n; is computed by 

Π; = W,TX. (5.22) 

This represents the similarity or distance if both the weight vector and the input 
vector are normalized, usually to unit length. In matrix form: 

N = W X (5.23) 
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Figure 5.2 Kohonen Network. 

Weight Training 
The winning node adjusts its weights according to: 

Wk +1 — wk + η(χ - wk) where η is the learning rate. (5-24) 

The Kohonen network is an example of competitive learning. One important as-
pect of competitive learning is how to divide the input space into disjoint subspaces to 
associate each input vector with the subspace to which it belongs. Learning vector 
quantization methods use competitive learning to find decision surfaces but in a su-
pervised learning approach. 

5.4 HEBBIAN LEARNING 

Hebb (1949) attempted to explain how the brain functioned on a cellular level. The 
essence of Hebb's law is that if two neurons fire simultaneously, the connection be-
tween them is strengthened. Thus Hebbian learning (Kosko, 1986) is also called corre-
lation learning. If we consider w,j to be the weight for the connection between neurons 
i and ;, then the weight adjustment at interval k will be: 

Wij(k + 1) = a^j (5.25) 

where at is the activation level, or value, of node / at time k. Hebbian learning only uses 
excitatory influences among neurons. It does not use any inhibitory influences. Thus 
synapses only strengthen, which can lead to stability problems. 

The linear association network associates pairs of vectors (xb yi) so that if x, is the 
input, y, will be the result. If a vector close to x, is presented, then a vector close to y,· 
will be the result. The computation is straightforward: 

y,- = w;
rx;- (5.26) 

The learning rule in Eq. (5.25) can be used to associate a new pair: 

w(k + 1) = x/y,-. (5.27) 
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For m pairs of vectors 
m 

w = Σ *ΓΚ (5-28) 

If Xi, . . ., xm are orthonormal, then 

T 
x« X; = 

Thus x, can be transformed into y, without error. If the space is n-dimensional, the max-
imum number of associations is n. If they are not orthonormal, an error will result in 
trying to retrieve y, from x,. 

5.5 ADAPTIVE RESONANCE THEORY (ART) 

As noted earlier, Carpenter and Grossberg (1988) developed adaptive resonance the-
ory. The original ART network accepted only binary input. Later, ART2 was devel-
oped, which also accepted continuous-valued input. The general algorithm will be dis-
cussed in terms of the original ART, also known as ART1. The ART network is 
basically a two-layer network as shown in Figure 5.3. It is, however, much more com-
plex than it appears. The network has two phases: recognition and comparison. There 
are bottom-up synapses, represented by by, the component of the weight vector con-
necting input node i to output node /. In addition, there are top-down synapses where 
Uj is the component of the weight vector which connects output node i to input node /'. 
The number of input nodes corresponds to the dimension of the input vector (Chester, 
1993). 

Each node in the bottom layer receives three inputs: the input value (xi), the sig-
nal from the upper layer mediated by ίφ and a logic signal from G\,. The network works 
on a two-thirds rule: at least two of the three inputs must be positive for the node to be 
activated. The Gx gate works as follows. When an input vector x is introduced, the pres-
ence of a single 1 bit in x activates the OR gate in G\. The NOR gate in G\ is true be-
cause there are not yet any signals coming from the top layer. Thus the ith node will be 
triggered if and only if x,< = 1. Thus x will pass through the bottom layer unchanged, 
and b will be identical to x. In the recognition phase, the network operates using a 
winner-take-all strategy, where the winning node has the bottom-up weight vector clos-
est to the input vector as determined by the dot product. (In the first cycle, a random 
selection determines the winner.) To moderate the winner-take-all strategy, in the com-
parison phase the network uses a vigilance test: 

2 Xi V Σ χί > P (5·30) 
i i 

where p is the vigilance parameter, 0 s p < 1. For binary values, the numerator is the 
number of attributes possessed by both vectors and the denominator is the number of 
attributes in the input vector. If the vigilance test fails, the network will continue to 
search for another output neuron whose weight vectors best match the input vector. If 
all neurons fail, a new neuron will be added. When a winner is confirmed, the G2 cir-
cuit is set to 0. At this point, the weights are modified. The top-down weights are com-
puted using a logical AND (Λ) operation: 

I i f ! = / . (5.29) 
0 otherwise 

tij(k + 1) = Xi A Ujik) (5.31) 
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Input 

Figure 5.3 Adaptive Resonance Theory (ART1) Network. 

The bottom-up synapses are based on a weighted version of the AND operation: 

b^k + 1) = Xi A tijikyUL - 1) + Σ Xihjik)] (5.32) 

where L is a user-selected constant (typically equal to 2) (Fu, 1994). 

ART1 Algorithm 

Initialization 

H°) = 1 

bij(O) = L / ( L - 1 + d) 

where d is the number of input units. 

Activation 

Activation of input nodes is determined by the input vector. 

Activation of the output nodes is: 

Oj = F w / b r
x ; (5.33) 
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where Fw(x) = 1 
0 

ifx = maXiß-J 
otherwise (the winner-take-all strategy) 

Vigilance test 
If Oj is the winner, compute 

^ X i tij / X Xi > p 
i i 

If the vigilance test is passed, update weights; otherwise set Oj = 0, disable Oj, 
and repeat. If all output nodes have been disabled, add a new output unit. 

Weight Training 

ty(k + 1) = tyfkj Xi (5.34) 

V k + 1)= Ltyfkj X i//(L -1) + Ixityfk); (5.35) 

EXAMPLE 

For the six-dimensional vector x 

x = (1,0,0,0,1,1) 

Assume that Oj is the winning node and 

f, = (1,1,0,0,0,1) 

The weight vector is changed to 

;, = (1,0,0,0,0,1) 

5.6 APPLICATIONS 

All of the networks discussed here and in Chapter 4 have strengths and weaknesses, 
and some are better suited to one application type. (These issues will be discussed in 
detail in Chapter 7.) In the remainder of this chapter we will look at some general uses 
for unsupervised learning and provide references to some specific biomedical exam-
ples. 

5.6.1 Dimensionality Reduction 

Because we live in three-dimensional space, we cannot visualize data sets in ex-
cess of three dimensions. One application of clustering techniques is to reduce the di-
mensionality of data to two or three dimensions so that it can be visualized. 

5.6.1.1 Minimization of Criteria Functions. Assume that we have the fol-
lowing set of «-dimensional samples, x1, . . . , x™ and we wish to generate a set of k-
dimensional samples y \ . . . , y"* where k < n. We then define the following distance 
measures 

6,y.· distance between xt and Xj 
άφ distance between y, and y, 

The objective is to make these distance measures as close as possible for all i, j . We can 
accomplish this by utilizing one of the following criteria: 
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JE = (1/Σ δ/) Σ ida ~ h)2 (5-36) 

JFF = Σ Mi - 8a)2/8>i\ (5·37) 

JEF = (1/Σ 8/) Σ (<*v - δ Α (5·38) 

The gradient descent method is then used to minimize the chosen error criteria. 

5.6.1.2 Clustering and Dimensionality Reduction. This method is a modifi-
cation of hierarchical clustering. The n X n matrix of distances is replaced by a d X d 
correlation matrix R = [p,-,] with d < n where 

Pij = a,y/(a,^)1/2 (5.39) 

where σί} is the covariance. 
Note that 

Pij 0 if uncorrelated 
1 if correlated 

Features are then merged if pi; is large. The following is the algorithm: 

Hierarchical Dimensionality Reduction (Duda and Hart, 1973) 
Initialize: Let dt = n, the original dimensionality of the sample vectors. 
Ifdt = d, stop (d is the desired dimensionality). 
Compute correlation matrix, find most correlated pair of clusters, fi and fj. 
Merge fi? fj. 
Delete fj, dt = dt — 1. 
Repeat. 

5.6.2 Biomedical Applications 

Under what circumstances would unsupervised learning be useful in biomedical 
applications? One area where clustering appears to be a natural approach is classifica-
tion of cell types. An interesting new application of self-organization is a global classi-
fication of all currently known protein sequences (Linial et al., 1997). Every protein 
sequence is partitioned into segments of 50 amino acid residues and a distance is 
calculated between each pair of segments. The space of segments is embedded into 
Euclidean space. The procedure uses a self-organized hierarchical clustering algorithm. 
Another recent example employs a Kohonen network for ventricular tachycardia 
source localization that uses body surface potential maps (Simelius et al., 1997). The 
objective is to obtain localization for different types of ventricular tachycardia. 

5.6.3 Diagnosis of CAD as a Clustering Problem 

Consider the problem from Chapter 4 for diagnosis of coronary artery disease. 
Assume that we have the same data set but that we do not know the correct classifica-
tion of any of the cases. We will use the same four parameters: 

Xi = maximum ST depression 
x2 = percentage change in heart rate from beginning to end of test 
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x-i = percentage change in blood pressure from beginning to end of test 
x4 = double product 

We therefore have a set of four-dimensional vectors of unknown classification. We also 
assume that we do not know the correct number of categories. The objective is to de-
termine four-dimensional clusters for the data set. As the dimension is greater than 
three, visual inspection is of no use, so one of the algorithms described in this chapter 
must be used. If we wish to apply hierarchical clustering, a distance measure must be 
defined. A sample vector for this problem is: 

x* = (1.5,0.2,-0.05,11000) 

First, for most distance measures, each parameter should be in the same range to pre-
vent one component from assuming undue importance. One method of ensuring equal 
ranges is to normalize each vector by dividing by the largest occurrence of each vari-
able over the entire data set. For example, assume we have the following maximum val-
ues for the data set: 

Maxfo) = 2.5 
Max(x2) = 0.5 
Maxfe) = 0.45 
Max(x4) = 32,000 

The normalized vector is then: 

x1 = (0.60,0.40,-0.11,0.34) 

Hierarchical clustering can be examined at each stage to see if the clusters seem 
to make clinical sense. In the absence of a gold standard for diagnosis, such as cardiac 
catheterization, the clustering approach may be the only strategy available. 

5.6.4 Other Biomedical Applications 

An interesting application of clustering using the nearest neighbor rule is given 
in Bonato et al. (1995). The objective was to improve the identification of late poten-
tials (LP) in patients affected by greater arrhythmogenic right ventricular disease 
(GARVD). Previous methods using spectral mapping of the ECG based on Fourier 
analysis suffered from poor reproducibility, a consequence of improper localization of 
the QRS segments. A new filtering method was used to increase the reliability of nor-
mality factors, which were then grouped using cluster analysis, greatly improving sen-
sitivity results. 

Another study compared the performance of three supervised learning ap-
proaches and one unsupervised learning approach on analysis of EMG interference 
patterns (Abel et al., 1996). The supervised learning techniques were backpropaga-
tion, radial basis network, and learning vector quantization. The unsupervised technique 
was a self-organizing feature map. The supervised learning approaches performed 
better overall than the unsupervised learning. Is this result one you would expect? 

A new unsupervised learning algorithm, the prototype distribution map (PDM), 
is based on the self-organizing map (SOM) procedure (Boyanov and Hadjitodorov, 
1997). This method has been applied to acoustic analysis of pathological voices caused 
by laryngeal diseases. The PDM operates on the already formed SOM. It is used to re-
duce dimensionality by eliminating less significant neurons. In the classification stage, 
the objective is to eliminate the most serious error: classification of an individual with 
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laryngeal disease as normal. Four preliminary classifications and scores are combined: 
PDM classifier, K-NN classifier, LDA (linear discriminant analysis) classifier, and clas-
sical SOM. The final decision is made by: 

1. If at least two classification methods accept a sample as a member of the dis-
ease class and the combined weights exceed 0.5, then the sample is accepted. 

2. If only one method accepts the sample or the weights are less than 0.5, the 
sample is rejected. 

The following parameters are used as features: 

Deviations in the pitch period 
Deviations in the amplitudes of pitch pulses 
Degree of unvoiceness 
Stability of "To" generation 
Degree of dissimilarity of shape of pulse pitches 
Harmonics-to-noise ratio 
Low-to-high energy ratio 
Noise-to-harmonics ratio 
Ratio of energy concentrated in the pitch impulse in cepstra to total cepstral 
energy 

The accuracy of this approach exceeded 90% percent. 

5.7 SUMMARY 

Unsupervised learning can be used when little is known about the data set. It only re-
quires a set of input vectors. Because of this lack of information, care must be taken in 
interpreting the output. First, if the number of categories is unknown, some means of 
deciding the appropriate number of clusters must be defined. One method is through 
the use of criterion functions. In any case, the results must be viewed in terms of the 
application to determine if they make sense and can be interpreted in terms of the 
problem. Unsupervised learning can be used as a first step in the investigating possible 
patterns in the data as a data mining technique that can be followed by more studies 
involving supervised learning or statistical analysis. 

EXERCISES 

1. For the following two-class clustering problem, use the city block distance and the 
initial cluster centers of (0, 0) for class 1 and (5, 3) for class 2. The data set to be 
grouped is 

*i = (l,0) 
X2 = (0,3) 
x3 = (5,5) 

Compute two passes of the Isodata procedure on the above data. Give the cluster cen-
ters after the two passes, and indicate if the procedure needs to be repeated. 

2. Given the feature vectors: 

-Xi = {(2,l), (1,4)} (class 1) 
X2 ={ ( -1 , -1 ) , (-3,-1)} (class 2) 
* , = {(!,-5), (2,-3)} (class 3) 
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(a) Compute the mean of each class 
(b) Using the mean as a prototype, classify the sample (1,-1) by the nearest neighbor 

algorithm using each of the following metrics: 
i. Euclidean 
ii. City block 

iii. Maximum coordinate 
3. Write the multidimensional generalizations for the Euclidean, city block, and maxi-

mum coordinate metrics. Show that your definitions meet the three conditions neces-
sary for a metric. 

4. (a) Describe a biomedical application that would be suitable for solution by a Koho-
nen network. 

(b) Could an ART network also be used for solution of this problem? Explain. 
5. Assume you have the following input parameters for your network: 

X\ = blood pressure 
x2 = heart rate 
x3 = white blood count 
xA = potassium level 
x5 = cholesterol level 

If you run a dimensionality reduction algorithm that combines variables xx and x2 (ie., *2 
is deleted), how does this affect interpretation of the output? 
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Design Issues 

6.1 INTRODUCTION 

For each specific application for which neural network modeling seems appropriate, a 
number of factors need to be considered in the design of the network, including 

Objective of the model 
Information Sources 
Type of input data 
Requirements of output 
Availability of data 

6.1.1 Objective of the Model 

If the model is a diagnostic model, is the purpose to find a model that will cor-
rectly classify new cases, or to determine which parameters can aid in differentiating 
among classes, or both? The type of network may affect your ability to obtain the re-
quired information. The impact of network design on output is discussed later in this 
chapter in conjunction with implications of network structure and choice of learning 
algorithm. 

6.1.2 Information Sources 

In some situations, it may be better to use a knowledge-based approach. Both 
knowledge-based and data-driven approaches have advantages and disadvantages. 
Some problems lend themselves better to one than the other. Before choosing a 
methodology, one should closely examine an application to locate the bulk of the in-
formation useful for decision making and determine the amount of effort that will be 
required for the full development of the information base. Figure 6.1 illustrates areas 
that should be considered before choosing a methodology. If a database exists or can 
be created with an acceptable amount of additional effort, then the neural network ap-
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Does database 
exist? 

Is database 
complete? 

Can database 
be created? 

Yes 

Use hybrid 
system 

Compare DB, 
KB efforts 

>B=KB 
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knowledge-

based system 

DB<KB 

Use hybrid 
system 

Is expert 
available? 

Yes z: ̂ ^ _ 
Use 

knowledge-
based system 

Redefine 
problem 

Figure 6.1 Choosing a Methodology. 

proach is appropriate. If most decision-making information is in the form of expert 
opinion, then the knowledge-based approach is more appropriate. (Knowledge-based 
approaches are discussed in Part II.) If a combination of data-derived and expert-
derived information is available, a hybrid method should be considered. (Hybrid sys-
tems are discussed in Chapters 17 and 18.) 

6.2 INPUT DATA TYPES 

6.2.1 Extracting Information from the Medical Record 

Figure 6.2 shows one page from a typical medical record. Some patients, 
especially the elderly and those with chronic diseases, may have multiple volumes, 
with each volume containing 100 pages or more. Although many hospital informa-
tion systems have some portions of the medical record in digital form, the hand-
written medical record continues to exist in some form in most hospitals, clinics, 
and physician's offices. The handwritten format introduces a number of problems, 
including: 

Location of pertinent items, such as previous test results 
Comparison of new information with previous history 
Missing information 
Illegible information 
Information with multiple interpretations 

Because of these problems, the first step in most medical research problems is to de-
vise a data collection sheet that includes only the information relevant to the current 
decision. The process of completing these data collection sheets, which usually includes 
information from the written record as well as computerized results, can pose chal-
lenging problems in itself. 
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Figure 6.2 Sample Sheet from Medical Record. 

6.2.2 Using Information from Data Collection Sheets 

Figure 6.3 shows a data collection form for the investigation of cardiac problems. 
This is an actual form that has been used to evaluate diagnostic factors in coronary 
artery disease and congestive heart failure. The goal is to convert this information into 
a form that can be used by the neural network. As we have seen in previous chapters, 
some neural networks accept only binary input, whereas others accept continuous vari-
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ID Number 
Age 
Sex 
Hx of bypass 
HxofMI 
Presence of symptoms (Increased, Decreased, Stable) 

Dyspnea 
Orthopnea 
PND 

Duration of Symptoms 
Physical Findings 

Resting Heart Rate 
Edema 
Rales 
Gallup 

Mitroregurgitation 
Functional Impairment (NYHA) 
LV Ejection Fraction 
Echo 
ETT Data 

Resting Heart Rate 
Resting Blood Pressure 
Time of Maximum ST Depression 
Time of Angina 
Total Exercise Time 
Heart Rate at End of Test 
Blood Pressure at End of Test 
Reason for Stopping ETT 

Holter Data 
Electrolytes 

Na 
K 
Mg 
BUN 
Cr 

Drugs 
Digitalis 
Diuretic 
ACE Inhibitor 
Vasodilators 
Anti-arrhythmic 

URI/Viral Syndrome 

(Integer) 
(Integer) 
(Binary) 
(Binary) 
(Binary) 
(Categorical) 
(Binary) 
(Binary) 
(Binary) 
(Continuous) 

(Continuous) 
(Binary) 
(Binary) 
(Binary) 
(Binary) 
Categorical) 
(Continuous) 
(Subjective) 
(Binary) 
(Continuous) 
(Continuous) 
(Continuous) 
(Continuous) 
(Continuous) 
(Continuous) 
(Continuous) 
(Subjective) 
(Subjective) 

(Continuous) 
(Continuous) 
(Continuous) 
(Continuous) 
(Continuous) 

(Binary) 
(Binary) 
(Binary) 
(Binary) 
(Binary) 
(Binary) 

Figure 6.3 Data Collection Form for Patients with Heart Disease. 

ables as input, or a combination of the two. Decision making in biomedicine may uti-
lize the following types of input: 

Binary (y/n, present/absent, true/false, 0/1) 
Continuous (laboratory values, blood pressure, heart rate, etc.) 
Categorical (stable, improved, diminished; drug use categories such as beta 
blockers, calcium channel blockers, anti-inflammatory) 
Fuzzy (ranges of test values, partial presence of symptoms) 

For a particular problem, only a subset of these variables may be present. When se-
lecting an approach, the application must be examined to determine suitable data 
types. Different problems that arise are discussed using Figure 6.3 as an example. 

6.2.2.1 Coding Multiple Responses. Note that "Electrolytes" has multiple 
listings. In fact, each of the entries—Na, K, and so on—contains a continuous variable 
so that this item requires five nodes in the network for its representation. Possible im-
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plementations include direct continuous input, binary nodes that indicate if the value 
is in the normal range, a categorical variable that indicates if the value is low, normal, 
or high, or fuzzy variable that indicates the degree to which the value is normal. The 
choice of the best representation depends not only on the data items but also on the 
decision to which the data items contribute. 

6.2.2.2 Ordering Categorical Data. Consider "Presence of symptoms" in 
which the form indicates that either increased, decreased, or stable should be entered 
for each of the three symptoms listed. In order for most learning algorithms to make 
use of categorical data, it must be ordered, that is, arranged from worst to best or vice 
versa. The easiest solution is to code the entries as decreased: 1, stable: 2, increased: 3, 
or some equivalent designation. 

6.2.2.3 Changing Categorical Data into Binary Data. Consider the entry in 
the data collection form for drugs. How should this information be utilized? Under 
drugs, a list of categories is given, and for some patients, drugs from multiple categories 
will be used. How is this information to be represented? The most straightforward ap-
proach is to define a binary variable for each category, with a 0 for "not using" and a 1 
for "using." 

6.2.2.4 Considering the Use of Fuzzy Input Data. Earlier we mentioned that 
the electrolytic values could be considered as fuzzy numbers. If this option is chosen, a 
neural network model that can process this type of information must be used. Typically, 
fuzzy input data are represented as triangular numbers that indicate the degree of pre-
cision for the value (Bezdek, 1987). For example, potassium (K) may have a normal 
range of 3.5 to 5.5 that would be represented by a trapezoidal membership function. 
The triangular function representing actual patient values would depend on the degree 
of precision of the test (see Figure 6.4). (For computational methods associated with 
fuzzy data, see Chapter 16.) 

μ 

1 A 

Normal Range for K 

Patient Reading 

Figure 6.4 Membership Function and Patient Data for Potassium Level. 
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6.2.2.5 Missing Data. Missing data is one of the major problems in estab-
lishing decision models in the health sciences, especially in retrospective studies where 
chart review is the chief source of information. In prospective studies with established 
protocols for data collection, this problem can be reduced but never completely elim-
inated. Several approaches can be used to deal with missing values: 

Remove the cases. 
Enter the minimum value. 
Enter the maximum value. 
Enter the average value. 

The first option ensures the integrity of the data, but if the number of variables is high 
and the number of missing values is also high, this approach will not be practical. The 
choice of whether to use the minimum, maximum, or average value depends on the 
variable and its potential clinical significance. For example, if blood pressure is the 
missing value, putting on a minimum or maximum value would indicate a pathological 
condition; thus, the average would be preferable. 

Note the entry "Holter data" on the collection sheet. This entry indicates only if 
the Holter showed irregularities, with the irregularity listed. Again we have the same 
choices of listing binary input (normal, abnormal) or each arrhythmia as a separate bi-
nary node (present/absent). For more sophisticated means of dealing with time series 
data such as Holter data, see the following section as well as Chapter 18 (Cohen and 
Hudson, 1998). 

6.2.3 Time Series Data 

Time series data are important in clinical decision making, especially in cardiol-
ogy through the use of the ECG. Many automated systems are in general use for analy-
sis of ECGs (McLaughlin et al., 1996).These systems generally report the presence and 
types of arrhythmias. Usually, the presence of specific types of arrhythmias is indicative 
of different cardiac disorders. The Holter tape is an extended version of the ECG and 
is recorded via a device that the patient wears over a twenty-four hour or forty-eight 
hour period. While it offers the advantage of recording the ECG under conditions of 
normal activity, it also records over 100,000 points of data in a twenty-four hour period. 
New work has indicated that the pattern of the R-R intervals (time between heart-
beats) is useful information in diagnosing specific cardiac conditions. 

Summary measures are used to provide information regarding the presence or 
absence of chaos that may be indicative of disease. It is difficult to verify the presence 
of chaos in experimental models. In the evaluation of time series data collected exper-
imentally, possible approaches for determining the presence of chaos are the Lyapunov 
exponent, the fractal dimension (Eberhart, 1989), and the central tendency measure 
(see Chapter 3). The Lyapunov exponent and the fractal dimension are used to deter-
mine the presence or absence of chaos in the system. The central tendency measure is 
used differently in that it indicates the degree of chaos in the system. (The incorpora-
tion of these measures is treated in Chapters 3 and 18.) 

Interpretation of data from biosensors falls under the category of time series 
analysis and has the added complication of multiple-channel output. In addition to 
data overload, other problems include determination of the proper sampling rate 
to keep data points to a minimum without loss of crucial information. For online 
monitoring systems, interpretation must be accomplished in real time. If a neural 
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network model is used for decision making, this requirement will limit execution 
time. 

6.2.4 Image Data 

In the collection sheet, also notice the entry "Echo," which is for echocardiogra-
phy information extracted from imaging of the heart through ultrasound (Salmasi and 
Nicolaides, 1989). This information can determine enlargement of the heart and other 
physical abnormalities. In the medical record, summary information is often provided, 
and it must then be coded. 

6.3 STRUCTURE OF NETWORKS 

The network structure may vary depending on the application, although some general 
guidelines are not application-dependent. 

6.3.1 Number of Layers 

As we saw earlier, the two-layer networks have theoretical limitations and can-
not solve certain problems, notably the exclusive OR problem. In general, it can be 
shown that a three-layer network can perform any task that a network with more lay-
ers can perform. Sometimes, however, use of more layers makes problems conceptu-
ally simpler. For example, in the Hypernet algorithm, if fractional contributions of 
nodes are used, one hidden layer can represent fractional contributions while another 
can represent integral contributions. 

6.3.2 Connectivity 

The function of a network depends not only on the number of its layers but also 
on its connectivity. We have seen examples of fully connected networks in which every 
node is connected to every other node such as backpropagation, and we have also ex-
amined partly connected networks such as Hypernet. The connectivity will affect the 
size of the training set as well as the interpretation of the output. 

6.4 IMPLICATIONS OF NETWORK STRUCTURES 

6.4.1 Classification Potential 

In order to examine the effects of number of layers and degree of connectivity, 
we will use the simple examples of networks in Figure 6.5. All networks have three 
input nodes and one output node. The network in part (a) is a fully connected feed-
forward two-layer network. Part (b) is a partially connected three-layer network, and 
(c) is a fully connected three-layer network. 

For part (a), we will assume that the activation of a node is computed according 
to the following: 

where xt is the input from node i and w; is the weight of the connection. Then: 

N = W\X\ + W2X2 + W3X3 (6.2) 
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(a) Two-Layer Network 

(b) Three-Layer Partially Connected Network 

(c) Three-Layer Fully Connected Network 

figure 6.5 Network Structures. 

In other words, this is a linear network that will only separate linearly separable sets. 
For (b), all weights are indicated by the connection to the output node: 

N = W\X\ + W>2*2 + W&3 + W12X\X2 + WXZXIXT, + W23X2X3 (6-3) 

This is a nonlinear network that contains direct contribution of linear terms as in Eq. 
(6.1) and interaction terms—that is, multiplication of each input node times all other 
input nodes. Thus the hidden layer performs the multiplication operations. The nodes 
contribute equally to the interaction; that is, the weights from level 1 to level 2 are all 
equal to one. 

For (c) it is more difficult to write the corresponding equation, because all input 
nodes combine at level 2, which are then combined again at the output level. Note that 
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there are no direct connections from input layer to output layer. For the &th node of 
the hidden layer we have 

Nhk = wklX! + wk2x2 + wk3x3 (6.4) 

Note that this is only one node in the hidden layer. All the JC/S will also be used in the 
other nodes in the hidden layer. For the output layer 

N0 = t»[Nhl] + μ[Ν„2] + p[Nh3] (6.5) 

Any data set can be separated if the order of the equation is high enough—that 
is, it has enough curves. In practice, it is dangerous to use a high-order equation as a 
decision surface because of the problem of overfitting (Hudson, Cohen, and Anderson, 
1991). Although the equation separates the given data set, it will be too fine-tuned to 
work well on new cases. 

6.4.2 Training 

6.4.2.1 Number of Cases Required. The network structure has an impact on 
the number of cases required for adequate training. A general rule of thumb is that be-
tween five and ten cases are needed for each node in the network. Thus the network in 
Figure 6.5a would require at least twenty cases, whereas the networks in Figures 6.5i> 
and c would require at least thirty-five cases. Acquiring a sufficient number of cases can 
be difficult, especially if a large number of input nodes are used. In addition, the size 
of the training set is often reduced because of missing values. Appropriate cases must 
also be selected for the specific problem under analysis as seen in the following exam-
ple. The exact number of cases for adequate training is difficult to determine, for it de-
pends on the degree of separation of classes as well as the differences in the data vec-
tors themselves. If new cases are added to a training set and the weights in the decision 
surface do not change or change only slightly, this is a good indication that adequate 
training has occurred. 

EXAMPLE 
As a practical illustration of what typically happens with data sets, consider the following actual 
example (Hudson et al., 1992). In an attempt to refine the parameters important in determining 
prognosis, 1756 cases of melanoma were examined from the melanoma clinic at the University 
of California at San Francisco (UCSF in 1990), established by the late M. S. Blois, M.D. The 
UCSF Clinic is one of the largest melanoma treatment centers in the United States and has been 
in operation for almost thirty years. 

Each patient case contained several hundred parameters, but for the purposes of this 
analysis, 109 were considered useful. The data were distributed as follows: 

Total number of cases: 1756 
Stage 1 cases: 1567 
Cases eliminated: 

Acral-lentiginous and mucosal 53 
(unusual types of melanoma) 

Missing values 143 
Remaining cases 1371 

The goal of the model was to compare parameters for those who survived melanoma and those 
who died. Thus the remaining 1371 cases were grouped as follows: 
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Group 1 (surviving) 1177 
Group 2 (died from melanoma) 167 
Group 3 (died from other causes) 27 

In order to make a valid comparison, group la was formed, which consisted of those sur-
viving after five years, with no stage 3 symptoms. This group contained 304 patients. The ratio-
nale for selecting this group was that five-year survival is the usual criterion for a cancer "cure." 
However, at the five-year point the patient must be cancer-free. The model was then established 
using group la and group 2: 

Group la (surviving > 5 years, 304 
no stage 3 symptoms) 

Group 2 (died from melanoma) 167 

Thus with a data set consisting of 1756 cases, only 471 were suitable for inclusion owing to the 
restrictions of the problem. 

6.4.3 Reduction in Number of Nodes 

If the number of cases that can be used for training is limited, then the number 
of network nodes must be limited to a size that can be supported by the data. This can 
be accomplished in two ways: (1) reduce the number of input nodes, or (2) reduce the 
connectivity of the network. 

Input nodes are selected in a number of ways: 

Each available data item is used as an input node. 
Nodes are selected through expert consultation or historical data. 
Nodes are selected through statistical significance. 
Nodes are pruned when weights drop below a certain threshold value. 

All except the first alternative permits adjustment of the number of input nodes. 

6.4.3.1 Expert Intervention. In some cases, experts in the field may deter-
mine that some of the nodes are not relevant to the decision at hand. For instance, it 
may be known that age is not a factor in the diagnosis of certain diseases. This method 
can be effective in limiting the number of nodes but runs the risk of eliminating infor-
mation that is falsely believed to be irrelevant. 

6.4.3.2 Statistical Significance. A method such as analysis of variance can be 
run to determine p-values indicating whether each variable is significant in the dis-
crimination process. This method can provide a basis for selecting nodes with the low-
est p-values, but again, it runs the risk of omitting important variables. Actually, nodes 
with low significance may make an important contribution when combined with other 
variables. 

6.4.3.3 Threshold Pruning. The learning algorithm may drop nodes when 
their weight drops below a certain threshold, that is, when the weight gets close to zero. 
The major problem with this approach is that in iterative training, weights may drop to 
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small values after a number of iterations only to increase again after subsequent iter-
ations. 

6.4.3.4 Other Techniques. Other techniques for node reduction include elim-
ination of nodes that are highly correlated with other nodes; combination of data 
items; and focusing decisions so that fewer nodes are relevant. 

An example of highly correlated variables is the presence of arrhythmias and the 
occurrence at PVCs on ECG analysis. Since the second is a more specific finding, the 
first can be omitted. An example of combination of data items is seen in the following. 
Refer to Figure 6.2 for ETT (Exercise Treadmill Testing) data. Although the heart rate 
and systolic blood pressure are entered at the beginning and end of the test, the im-
portant aspect is the change in each reading. Thus these four variables can be reduced 
to two—change in heart rate and change in systolic blood pressure. (Hudson, Cohen, 
and Deedwania, 1993). An example of a focused decision would be to limit a decision 
to the presence or absence of a specific cardiac disorder such as angina rather than a 
general determination of type of heart disease. 

6.4.4 Output 

How does the network structure affect the output? The effect depends on the 
purpose of the network. In some classification models, the sole objective is to find the 
correct classification of a case presented to the network in a black-box manner. Thus 
the only output considered is the classification of the case. If this is the desired result, 
then the network structure directly affects the output only in the number of possible 
output nodes. As we will see later (Chapter 16), use of fuzzy neural networks makes it 
possible to have membership in multiple classes (Ruspini, 1969; Archer and Wang, 
1991). This is also true in some extended Bayesian systems introduced by Patrick and 
discussed in Chapter 15 (Patrick and Fattu, 1984). 

In other cases, especially in biomedical applications, not only is the classification 
important, but so are the parameters that led to the conclusion. In fact, as in the 
melanoma decision given earlier, determining the contributing factors was the pri-
mary objective of the model. If this is the case, then the network structure greatly in-
fluences the interpretation of the contribution of the input parameters. Obviously, 
a linear network as shown in Figure 6.5a is the easiest to interpret but has the 
least power for classification. The network in Figure 6.5c is extremely difficult to 
interpret, whereas Figure 6.5Z> offers a compromise between classification power and 
interpretive power. 

6.5 CHOICE OF LEARNING ALGORITHM 

The learning algorithm determines the network structure; thus once the desired struc-
ture of the network has been determined, the choices of learning algorithms will be au-
tomatically limited. The aspects of the network design which are intertwined with the 
learning algorithm are type of input nodes (binary, continuous, fuzzy, etc.); and con-
nectivity. Additional aspects of the learning algorithm that must be considered are con-
vergence and stability. For some algorithms, it is possible to show theoretically that the 
algorithm will converge under specified conditions. For others, the conditions under 
which it will not converge can also be specified. A summary of convergence properties 
for some of the learning algorithms that have been discussed earlier will be given in 
Chapter 7 (Duda and Hart, 1973; Fu, 1994; Chester, 1993). 
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Some learning algorithms may not be stable under some conditions. These algo-
rithms may decay into oscillatory or chaotic conditions and either fail to produce a so-
lution or, worse, produce a meaningless solution. For these algorithms, in order to en-
sure stability, certain limiting, or boundary, conditions must be specified. Often this is 
difficult when experimental data are used; therefore these algorithms work well for ar-
tificially generated well-behaved data sets but not for experimental data. Comparisons 
using different approaches are given in Chapter 8 (Maxwell et al., 1986). 

6.6 SUMMARY 

It is not possible to determine the best approach to decision making under all condi-
tions. This choice is dependent on the type of application, the type of decision-support 
information that is available (specifically if it is expert-based or data-based), the input 
parameters, and the type of results required. Analysis of these parameters in advance 
of choosing a methodology not only saves time but also increases the chances of de-
veloping a useful decision-support system. 

EXERCISES 

1. From viewing the medical record in Figure 6.2: 
(a) What aspects would be the most difficult to computerize? 
(b) What do you see as the chief advantages of the computerized medical record? 
(c) How would the computerized medical record affect the following? 

Patient care 
Emergency services 
Medical costs 

2. For the data set in Figure 6.3, identify other possible data types for each entry. If it is 
possible to formulate the data structure for an item in multiple ways, give all possibili-
ties. 

3. In the melanoma example in Section 6.3.2.2, 
(a) What is the goal of the neural network model? 
(b) Why was it necessary to form Group la instead of using Group 1 directly? 

4. Devise a set of four three-dimensional feature vectors that cannot be separated by the 
network in Figure 6.5« but can be separated by the network in Figure 6.5b. Give the 
separating vector for part (b). 
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Comparative Analysis 

7.1 INTRODUCTION 

It is easy to become confused when confronted by the numerous approaches available 
for the design of neural networks. Unfortunately, there is no straightforward universal 
approach for choosing the best methodology. Several factors affect the choice, includ-
ing the form of the available data, particularly whether or not the data are of known 
classifications; the number of classes into which the data are to be divided; the amount 
of available data; and the number of parameters involved. 

7.2 INPUT DATA CONSIDERATIONS 

How does one choose a neural network approach? Making the final choice depends on 
the answer to a number of questions. 

Is your data of known classification? 
What type of input variables do you have (binary, categorical, continuous, etc.)? 
Approximately how many input variables do you have? 
How many cases are available for training? for validation? 
Do you know how many classification categories are involved? If so, how many? 
What do you know about the structure of the data? 

It should be clear from your data set whether you are looking at a supervised 
(known classification) or an unsupervised (unknown classification) learning prob-
lem. Once this distinction has been made, methods within each category can be com-
pared. Figure 7.1 gives a graphical summary of the types of decisions that must be 
made when choosing an algorithm. The remainder of this chapter provides a summary 
of the methods studied in Chapter 4 (supervised learning) and Chapter 5 (unsuper-
vised learning), along with more details regarding the advantages and disadvantages of 
each approach. 
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Choose Supervised 
Learning Algorithm 

Choose 
Continuous-
Valued 
Algorithm 
from Table 7,1 

Choose 
Unsupervised 
Learning Algorithm 

Reformulate 
Problem 

Binary 
Choose 
Binary-Valued 
Algorithm 
from Table 7.1 

Choose 
Clustering, 
Kohonen, or 
ART 

Begin 
Training 

Choose 
Kohonen, 
ART or 
Modified 
Clustering 

N. Yes 
Clustering? \ . 

|^Jo 

Choose 

Figure 7.1 Choosing an Approach. 

7.3 SUPERVISED LEARNING ALGORITHMS 

The learning algorithm determines what a network can do. However, each learning al-
gorithm may behave differently depending on the nature of the data. It is useful to 
compare methods by considering the following: 

Type of input data 
Ability to handle nonlinearly separable data 
Assurance of obtaining separation on data which is separable 
Stability of decision surface 

In Chapter 4, we looked at a number of supervised learning techniques that have 
some features in common (Chester, 1993; Fu, 1994; Widrow, 1990). These are reviewed 
here, and their capabilities are summarized. 
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7.3.1 Gradient Descent Procedures 

In Chapter 4 we discussed a number of gradient descent learning algorithms that 
differ both in their criterion function and in the manner in which weights are adjusted. 
As you will recall, the general approach is to find a solution to the set of linear in-
equalities 

wry > 0 (7.1) 

by minimizing a criterion function /(w), where w is an n-dimensional weight vector 
and y is an «-dimensional feature vector. The weight at the k + 1 point in time is de-
fined by 

w*+i = wfc - pW(w fc) (7.2) 

where V is the gradient. The scale factor p is the learning rate and must be carefully 
chosen. If it is too small, convergence will be slow; if it is too large, it may cause the 
process to diverge. 

A subset of gradient descent procedures, minimum squared error procedures do 
not attempt to solve inequalities, but rather seek a solution to the equation 

wry,· = bt (7.3) 

where the &,'s are arbitrary positive constants. Matrix notation is used to represent the 
resulting simultaneous equations. 

A summary of linear gradient descent properties is given in Table 7.1, based on 
Duda and Hart (1973). yk indicates the k sample that is to be classified. Note that some 
of these approaches work only with linearly separable sets. Another major difference 
is seen in minimum squared error approaches in that they use all samples, not just 
those that are misclassified. These are practical considerations when choosing an algo-
rithm. In general, it is not possible to know in advance if the training set will be linearly 
separable. It is thus safer to use a minimum squared error procedure. However, cau-
tion must be used. Although these approaches in general work for nonseparable sets, 
they do not necessarily produce a separating surface for sets that are separable and 
may not converge at all in some cases. The linear perceptron, of which the fixed incre-
ment algorithm is a special case, has been shown to have severe limitations in the so-
lution of some problems, in particular the exclusive OR (Gorry, 1973). These short-
comings can be remedied by using nonlinear versions of the perceptron or similar 
algorithms (see Chapter 4). 

7.3.2 Extensions to Nonlinear Decision Functions 

The following generalization of the perceptron algorithm extends its ability to 
separate nonlinearly separable sets. The decision function is 

D(x) = Σ wiyi(x) = wry (7.4) 

where w is an «-dimensional weight vector and y,(x) is a set of arbitrary functions of x. 
Similar extensions can be made for other descent algorithms. In terms of network 
structure, the original perceptron was a two-layer network, and the generalization is a 
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three-layer network. Generally, three-layer networks will work on data sets that are 
not linearly separable (Gibson and Cowan, 1990). 

7.3.3 Extensions to Multiple Categories 

In Chapter 4, two methods were given for extending these algorithms to multi-
category problems: (1) Kesler's construction, and (2) c two-category problems, where 
c is the number of classes. In either case, the amount of calculation increases dramati-
cally and requires sufficient cases in each category for proper training. In neural net-
work representations, two-category problems either have one output node that fires 
for class 1 and does not fire for class 2, or two output nodes where node i fires for class 
i. The second construction is easy to generalize to multiple categories with the addition 
of more output nodes. Mathematically, however, the addition of more output nodes has 
the same implication for increased calculation and larger training sets as the methods 
discussed earlier. Figure 7.2 illustrates these two approaches. 

(a): One-Output Node Networks for c-Category Problem 

(b): Multiple-Output Node Networks 

Figure 7.2 Neural Network Structures for Multiple Category Classification. 
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7.4 UNSUPERVISED LEARNING 

Unsupervised learning is a much more difficult problem because it is not always pos-
sible to determine if a correct solution has been found. The methods described in 
Chapter 5 all work well within certain constraints but may also encounter major diffi-
culties. These difficulties are discussed in two categories: clustering algorithms and self-
organizing networks. 

7.4.1 Clustering Methods 

7.4.1.1 Choice of Method. Most of the methods used in clustering employ it-
erative optimization (Duda and Hart, 1973). Like all hill-climbing procedures, these 
methods can be shown to result in local optimization, which may or may not be global. 
As is the case with supervised learning, if the order of the samples is changed (i.e., the 
starting point is different), a different solution may be found. 

The difference in clustering measures is basically the choice of the distance mea-
sure or metric. Following are commonly used metrics along with the clustering algo-
rithm associated with them: 

Nearest Neighbor 

Dnla(XbXj) = wto \\x-A (7-5) 
xeXiX'eXj 

Furthest Neighbor 

Anax (Xb Xj) = max | |x-x ' | | (7.6) 
xsXiX'eXj 

Compromises 

Davg(Xb X}) = (l/iyi;) X X ||z - x'll (7.7) 
xeXi x'eXi 

Dmean(Xi, Xj) = \\m - m,|| (7.8) 

Z)avg can also be used in place of a similarity measure when the similarity between 
mean vectors cannot be defined. (For examples of the uses of these measures, see 
Chapter 5.) 

7.4.1.2 Choice of Distance Measure. If clustering is viewed as grouping items 
in geometrical terms as we do with similarity measures, then the choice of the distance 
measure, or metric, has some impact. If the Euclidean distance is used, the results are 
invariant to translations and rotations (i.e., the space is isotropic). However, it is not in-
variant to linear transformations or any other transformation that distorts distance re-
lationships. If the distance itself has no meaning in the data set, then this is not a prob-
lem. For example, if the data are ordered categorical, such as symptoms (0: improved, 
1: no change, 2: worsened), then it is the order and not the distance between the cate-
gories that matters. If the data are continuous physical exam readings such as heart 
rate, a distortion of the distance, for example, between a heart rate of 92 and a heart 
rate of 96, may give more weight to the difference than the clinical situation would 
warrant. To avoid this problem with other data sets, the data can be scaled in advance 
so that all features have zero mean and unit variance. (These methods are discussed 
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further in Chapter 15 when we consider probabilistic approaches.) The normalization 
method may not be useful if the magnitude of the variable is important for determin-
ing subclasses, which is often an important consideration in clustering. For example, an 
enzyme level that exceeds a certain threshold may be indicative of the occurrence of a 
myocardial infarction and should be grouped accordingly. 

7.4.1.3 Limitations. In most of the methods discussed in Chapter 5, it was as-
sumed that the number of clusters was known in advance. For unknown data sets, this 
is usually not the case. The only methods appropriate in this case are variations that try 
a different number of clusters and then compare results. This is often a difficult task 
inasmuch as the correct classifications of the data are unknown. Typically, the method 
starts with one cluster, then goes to two, four, and so on, in a procedure similar to hi-
erarchical clustering. 

7.4.2 Self-Organization Networks 

7.4.2.1 Kohonen Networks. The Kohonen network (Kohonen, 1990) is an al-
ternative method to hierarchical clustering for performing clustering through the 
winner-take-all paradigm. The competitive learning algorithm seeks a local minimum 
using the criterion 

J = 1/2 Σ ||wÄ - Xp|| 

where wk is the center of the winning cluster corresponding to neuron k, \p is the pre-
sented input pattern, and || || is the Euclidean distance (Fu, 1994). As such, it has the 
same limitations discussed under descent procedures. 

7.4.2.2 ART Networks. The ART networks (Carpenter and Grossberg, 1987) 
are also examples of competitive learning. As you will recall, the initial ART network 
accepted only binary input, but this restriction was removed in the ART2 network that 
accepts continuous input. The ART networks are resonating networks in that weights 
are passed in both directions between the input and output layers. The theoretical 
bases for resonating networks are quite complex. The system designer has little control 
over assignment of patterns to categories. The system is more sensitive to noisy data 
than clustering methods, including the Kohonen network (Chester, 1993). 

7.5 NETWORK STRUCTURES 

7.5.1 Number of Categories 

In most problems, the number of possible categories is known. Most of the algo-
rithms we have discussed assume this knowledge. In most biomedical applications, the 
number of classes is known. Some classes, such as the ART network, add categories as 
necessary. In problems such as spatiotemporal pattern recognition, it is useful to have 
networks that can determine the number of classes required. 

7.5.2 Connectivity 

The connectivity of a network can affect its performance. For networks that are 
completely connected, the mathematical description of the network becomes quite 
complex, as does the interpretation of how each input node contributes to the final de-
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cision. The backpropagation network (Rummelhart, McClelland, and PDP, 1986) is an 
example of a network that is fully connected between adjacent layers but does not 
have connections that jump from layer 1 to layer 3, for example. In general, the user 
does not have control over the level of connectivity as the algorithm determines the 
connectivity. 

7.6 INTERPRETATION OF RESULTS 

When choosing an algorithm, it is important to determine the desired result at the out-
set. There are a number of possibilities, which are often different for supervised and 
unsupervised learning. 

7.6.1 Supervised Learning 

The three phases of the supervised learning process are training, evaluation, and 
classification. 

7.6.1.1 Training. The objectives of training are 
1. To find a model that correctly classifies all or most of the cases in the train-

ing set. 
2. To determine which parameters are important in the model. 
3. To determine the relative importance of each parameter. 

The first objective is present in virtually all supervised learning approaches. In 
some cases, this may be the only objective. If so, the model is viewed in a black-box 
fashion with the assumption that the user is interested only in the result, not in the 
process that led to the result. If this is the case, the only consideration in selecting an 
algorithm is its effectiveness in obtaining a reliable separation of the data. 

In most approaches, the parameters that are in the final model can be identified. 
These may or may not be the same parameters with which the training process started, 
for many algorithms perform pruning of input nodes when the weights attached to 
these nodes drop below a certain value. 

If part of the objective of the training process is to identify the relative contribu-
tions of input nodes to the output decision, then more attention must be paid to the 
choice of algorithm. For fully connected networks, one obtains a matrix of weights that 
is extremely difficult to interpret. Partially connected networks provide more direct in-
terpretation of results. To determine relative weights, the data must be scaled before 
training. (Scaling is discussed in Section 7.6.3.) For example, consider a network with 
three input nodes and four nodes in the hidden layer in a fully connected network, as 
illustrated in Figure 7.3. Assume that the weight between node i in the input layer and 
node ;' in the hidden layer is wi; and that the weight from node / in the hidden layer 
to node k in the output layer is ω,*. If we wish to determine the impact of input node 
i on output node k, we have the following weights to interpret: wa, wi2, wB, wi4, ω1/ς, 
(»2k, <»>3k, <>>4k· 

7.6.1.2 Evaluation. Once training has been completed, the accuracy of the 
model must be tested on a different data set, the test set. Although this is part of the 
classification phase, the objective is not to classify data, for the proper classification is 
already known, but to compare the classification obtained by the model to the known 
classification. The objective of this phase is to determine the effectiveness of the model, 
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Figure 7.3 Fully Connected Network with Three Input Nodes. 

which may be measured in terms of sensitivity, specificity, accuracy, and predictive 
power. (For an example, see Chapter 5.) 

7.6.1.3 Classification. Use of the model for true classification is seen in the 
classification of new data for which the prior classification is unknown. At this point, 
the user is relying on the accuracy and ability to generalize the network to perform ef-
fectively on new cases. Its success in accomplishing accurate classification depends not 
only on the algorithm but also on the data on which it was trained and tested. In mul-
ticategory problems (i.e., more than two categories), the objective may be to establish 
a differential diagnosis list. A case may be classified as belonging to more than one cat-
egory, which can be accomplished by the following: 

1. If the network has multiple output nodes, more than one may fire for a par-
ticular case. 

2. If the problem is formulated as c problems where each problem is to deter-
mine membership or nonmembership (e.g., presence or absence of disease), 
membership may be found to hold in more than one subcase. 

All the multiple results would then be considered as possible outcomes. In Chapter 16, 
we will see that fuzzy methods can attach a degree of membership to each category, 
thus providing additional information for differential diagnosis. 

7.6.2 Unsupervised Learning 

We can consider the same three phases in unsupervised learning, although the 
goal in each case may be slightly different. 

7.6.2.1 Training. The objectives of training in unsupervised learning include 
1. Determination of natural clustering of data into groups or clusters. 
2. Determination of number of significant clusters. 
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3. Development of maps that provide insight into data relationships. 
4. Dimensionality reduction. 

7.6.2.2 Evaluation. The evaluation of unsupervised learning models is 
extremely difficult because the correct outcome is unknown. One approach is to 
break data into two sets through a random process and to run the algorithm sepa-
rately on each set. Results can then be compared to see if similar models have been 
established. In some cases, some knowledge regarding the general nature of the 
data may be known, which can be used to ascertain whether the model seems rea-
sonable. 

7.6.2.3 Classification. Once a model has been established, new cases can be 
classified. As an example, consider a clustering problem in which a model with three 
clusters was produced. A new data vector can then be classified using the similarity 
measure or metric used in establishing the model. The new sample will be assigned to 
the cluster to which it is most similar. As we will see in Chapter 16, fuzzy clustering al-
gorithms assign a degree of membership to each new vector in each cluster. This is a 
useful approach for problems such as differential diagnosis. 

7.6.3 Data Scaling and Normalization 

To compare the weights attached to input nodes relative to one another, the in-
put variables must be in the same range. Looking at an earlier example, consider these 
two vectors: 

x1 = (130,100,98,2.8,102,131,102) x1 is in class 1 
x2 = (120,77,72,0.0,110,160,90) x2 is in class 2 

Clearly, these are not comparable ranges. The most common solution is to normalize 
the data to values between 0 and 1 or - 1 and 1 by dividing by the largest value possi-
ble for each variable. 

7.6.4 Dependence on Training Data 

One major limitation of all learning approaches is that the training is done on a 
specified set of cases that must represent a similar population to the one on which it is 
to be used. Thus, if the network was trained on the detection of heart disease in a mil-
itary hospital, the result may not be applicable to a public hospital because the demo-
graphics do not correspond in terms of age, gender, physical condition, and other im-
portant factors. 

7.7 SUMMARY 

Choosing an appropriate modeling technique is a complex process involving the eval-
uation of a number of factors. In some cases, it may be useful to try two or more 
methodologies and compare results, although this will obviously require additional 
time and effort. The best measure of a model is its performance on a test set, keeping 
in mind that its performance on new cases will depend on the similarity of the sample 
population to the training population. 
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EXERCISES 

1. What is the first step in establishing a neural network model? 
2. List three ways in which data can be obtained for use in a medical decision-making sys-

tem. For each method, how can you ensure the reliability of the data? 
3. Describe the relationship among the following procedures for finding discriminant 

functions: 
(a) Descent algorithm 
(b) Fixed increment algorithm 
(c) Perceptron algorithm 
(d) Minimum squared error algorithm 
(e) Ho-Kashyap Algorithm 

4. Give an example of a clustering problem that would best utilize each of the following: 
(a) Minimum distance metric 
(b) Maximum distance metric 
(c) Average distance metric 

5. Can the perceptron algorithm be used for problems in differential diagnosis? Explain. 
6. How can you be sure that the data set that was used for training a network will be suit-

able in a new environment? What factors must be considered? 
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Validation and Evaluation 

8.1 INTRODUCTION 

Two separate issues are involved in testing neural networks as decision-support sys-
tems for biomedical applications. First, the technical performance of the chosen algo-
rithm must be assured, and second, the performance of the algorithm on the specific 
application must be evaluated. A neural network classification model is made up of 
two components: the learning algorithm and the training data. A fault in either com-
ponent can cause the system to fail to achieve its goal. When evaluating and validating 
a neural network model, we assess three aspects of the system: 

1. The integrity of the data alone 
2. The technical performance of the learning algorithm 
3. The performance of the learning algorithm in conjunction with the training 

data 

The next three sections in this chapter will focus in turn on these three issues. 

8.2 DATA CHECKING 

8.2.1 Verification of Accuracy of Data for Training 

A number of sources of information may be used to establish biomedical 
decision-support systems. These include chart review, databases, and prospective stud-
ies. Each has its own difficulties, as we will see. 

8.2.1.1 Chart Review. The advantage of chart review is that all medical insti-
tutions already have rooms full of data. This is also one of its disadvantages: Unless the 
patient records are computerized, it is a major chore to extract data from medical 
records. Major complications include searching through multiple page records for the 
information, interpreting what is written (often deciphering what is written!), and deal-
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ing with missing information. The researcher is restricted to the information that has 
been recorded which differs from patient to patient and from visit to visit, and may not 
include all parameters that would be useful to include in the model. In fact, the major 
step in going from paper records to computerized records is the format of the medical 
record. This problem remains thirty years after the first attempts to revise it and pro-
duce an electronic medical record. 

If you are lucky enough to work with a medical facility with computerized med-
ical records, some of the problems mentioned earlier will still remain, including miss-
ing information. If the format of the electronic record is standardized, it should remove 
some of the difficulties with information differing from one patient and one visit to an-
other. However, it still may not contain all relevant information. 

8.2.1.2 Databases. Databases may be local or from outside sources such as 
Internet databases, or a combination of the two. Databases have major advantages 
over medical records in that the data items are already organized and in digital format. 
Combination of databases that were collected at different sites is difficult due to in-
consistencies in the variables recorded. In addition, the criteria for certain items may 
differ from one institution to another. For example, in one study a coronary artery may 
be considered blocked if it is 70 percent occluded, whereas another may use 75 percent 
as the cutoff. 

8.2.1.3 Prospective Studies. The prospective study is the best method for col-
lecting data, for the researcher has control over what is collected and who collects it. 
Both are major factors in maintaining consistency, which is necessary because many as-
pects of biomedicine require interpretation. The data collection sheet in Figure 6.3 il-
lustrates this point. Note that although some items, such as test results, are straightfor-
ward numerical values, many others, such as presence of symptoms, are not. The major 
drawback to prospective studies is the time it takes to acquire sufficient data, especially 
in areas where followup information is needed. 

8.2.2 Appropriateness of Data for Training 

The following factors need to be considered when selecting a training set: 

Is the data representative of the population you wish to study? 
Are there as few missing values as possible? 
Has the accuracy of the data been verified as far as possible? 
Does the data need to be scaled? 
Are there approximately ten cases per node in the network? 

In addition, for supervised algorithms, the following must be verified: 

Is the data set consistent? That is, are there any identical vectors with different 
classifications? 
Are there sufficient cases in each classification category? 
Is a reliable gold standard available for determining correct classification? 

It is important to remember that your model is built using the data in the training set 
and will only be as good as the data. 
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8.2.3 Use of Gold Standards in Supervised Learning 

A significant problem in supervised learning is the determination of the correct 
classification. In general, a so-called gold standard is used for diagnosis. For example, 
the gold standard for determining coronary artery disease is cardiac catheterization. 
Not all patients, however, will have had cardiac catheterization, for it is an invasive pro-
cedure and poses risk to the patient. If this test has not been done, the diagnosis may 
be determined by other less reliable means. Thus the network is often trained on an as-
sumed diagnosis. As another example, if the objective of a model is to determine which 
parameters should be included in the decision to perform surgery on patients with car-
cinoma of the lung, the data classification will represent what was actually done, not 
what should have been done. This type of problem can be alleviated to some degree by 
using followup data to determine if the correct decision was made, but there is no cer-
tain way of making this determination. 

8.3 VALIDATION OF LEARNING ALGORITHM 

8.3.1 Technical Integrity of Algorithm 

If you are using a purchased algorithm, it has likely been tested thoroughly. How-
ever, you should not rely on this, but should do your own testing on a trial set of data 
to see if the algorithm behaves as expected. If you have written the algorithm yourself, 
this testing must be more extensive. 

8.3.2 Appropriateness of Algorithm for Given Application 

8.3.2.1 Theoretical Considerations. In Chapter 7, we discussed choosing an 
algorithm that is appropriate for your application. Some considerations to remember 
include: 

Select an algorithm that is appropriate for the type of input data in your applica-
tion. 
Make sure that the algorithm does not produce a network with more nodes than 
your data can support. 
Determine if the algorithm produces output that you can interpret in terms of 
your problem definition. 
Consider the stability and convergence properties of the algorithm. 

8.3.2.2 Practical Considerations. The training time required by the algo-
rithm may be a consideration. However, in general, as the training is done only once, 
even if the training time is long it is not a severe limitation. Training algorithms that 
have a high number of iterations may have problems of error propagation especially if 
they involve addition and subtraction of large numbers. 

8.3.2.3 Comparison to Other Approaches. In an ideal world, it is beneficial to 
develop models using more than one approach. This involves a commitment of time, 
both human and computer. The traditional method for evaluating software involves 
benchmarking. When benchmarking systems, a specified set of criteria are established 
in advance and the algorithms are compared according to these criteria. Some possible 
items to include when benchmarking neural network algorithms are: 
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Training time 
Number of iterations required 
Convergence of algorithm 
Stability of solution if additional vectors are added to training set 
Stability of solution if order of training vectors is changed 
Accuracy of results 

8.4 EVALUATION OF PERFORMANCE 

8.4.1 Supervised Learning Algorithms 

Once your input data has been selected and verified to the greatest degree pos-
sible and the integrity of the algorithm has been established, it is time to test the two 
together. Once the training has been done, evaluation must be done on a separate set 
of data, the test set. 

8.4.1.1 Performance of Algorithm on Test Set. The performance of the algo-
rithm on the test set is the primary method of evaluation. It is important to use mea-
sures such as sensitivity and specificity to test the accuracy by category as well as the 
overall accuracy. It is possible to obtain very high accuracy in one category at the ex-
pense of the other. In medical problems, the goal is usually to balance the two. In some 
applications, however, it is better to err on the side of obtaining false positives rather 
than obtaining false negatives. The converse can also be true. 

8.4.1.2 Relevance of Contributing Parameters. In addition to the classifica-
tion results, it is important to look at the contributing parameters. Do they make sense 
from a medical point of view? It is difficult to convince medical professionals to accept 
a model that includes parameters that appear to be irrelevant to the problem. On the 
other hand, sometimes new relationships can be discovered through this process. An-
other danger is a model that does not contain a parameter that historically has been 
believed to be important. In some cases, it turns out that the model is correct, and the 
long-held belief is not. 

8.4.1.3 Comparison to Other Methods. Can your results be compared to 
other methods? This is always possible but may be time-consuming. Often, as statisti-
cal analysis is the accepted method of analyzing medical data, it is useful to compare 
results with traditional statistical methods. Classification results can be compared with 
results from discriminant analysis. The significance of contributing parameters can be 
compared with ί-tests or analysis of variance, depending on whether the data are con-
tinuous or discrete. 

Your results can also be compared to historical data through literature searching 
or consultation with experts. Remember that you cannot assume that the model is in-
correct because it differs from historical belief. A model is most useful if it contains 
something new. The new information will not, and should not, be accepted without ad-
ditional verification. 

8.4.2 Unsupervised Learning 

As mentioned earlier, it is very difficult to evaluate unsupervised learning results. 
There are a few approaches, however: 
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See if the model makes sense from a medical standpoint. 
Verify that the distance between clusters or groupings is large enough. 
Compare the outcome to historical results. 
Determine if the clusters are representative of a disease or condition. 

8.4.2.1 Applicability to Other Data Sets. Once having gone to the trouble of 
collecting data, implementing an algorithm, and developing a model, one would hope 
that the model would be applicable to other data sets. In practice, one must be very 
careful. The following must be considered: 

Is the other data set demographically similar? 
Does it contain most of the same parameters used in your model? 
Can you verify the accuracy of the data? 
Do you know the criteria used when the data were collected, especially on sub-
jective questions? 

If the answer is yes to all of these questions, it may be possible to use the model di-
rectly to classify new cases. Remember, there are three phases: 

1. Training 
2. Testing 
3. Classification 

There are a number of options for the new data: 

Classify new data using old model (begins with step 3). 
Test new data using old model (begins with step 2). 
Re-train model on new data and compare results with previous model (begins 
with step 1). 
Combine new data and old data in the same training set (begins with step 1). 

If you use the new data set for supervised training, make certain that the gold standard 
for determining the correct classification is the same in both models. 

EXAMPLE 
Consider the following case study for determining the prognostic factors in congestive heart fail-
ure (CHF) (Hudson et al., 1997). We had previously described a neural network model for prog-
nostic factors in congestive heart failure (CHF) (Hudson, Cohen, and Deedwania, 1996). The ini-
tial model was based on a sample of 100 CHF patients: 50 surviving and 50 deceased. The data 
collection sheet is shown in Figure 6.3. The learning algorithm used was Hypernet (Cohen and 
Hudson, 1992). The variables identified in the initial model were: 

Symptom status (decreased, stable, increased) 
Blood urea/nitrogen concentration (BUN), orthopnea (y/n) 
Dyspnea at rest (y/n) 
Heart rate 
Edema (y/n) 
Functional impairment (levels 1-3) 
Proxysmal nocturnal dyspnea (PND), (y/n) 

The second study included 450 additional patients who had been treated for CHF and 
were followed between 1992 and 1996. The parameters from the original model were used with 
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the new expanded data set to test stability. The model was retrained using data from both stud-
ies but was limited to the parameters identified in the first study. 

Table 8.1 shows the results for the second study. Table 8.2 shows the comparison of sensi-
tivity and specificity with the original study. Note that both the sensitivity and specificity dropped 
in the second study. Although the data were collected at the same institution using the same cri-
teria, a different student intern completed the data collection form for the second study. Other 
possible reasons for the difference may be due to natural variations. An additional possibility is 
that the original data set was not large enough for complete training. The exact reason for the 
difference may be resolved through additional analysis. In some cases, no definitive answer can 
be found. 

Table 8.1 Classification Results 
for Expanded Data Set 

Correctly Incorrectly 
Classified Classified 

Group 1 (surviving) 198 87 
Group 2 (deceased) 121 44 
Total 319 131 

Table 8.2 Comparison Between First and Second Data Set 

Initial Model 
Expanded Model 

Sensitivity 

79% 
70% 

Specificity 

80% 
73% 

Accuracy 

79% 
71% 

8.5 SUMMARY 

In the development of medical decision-making aids, through the use of neural net-
works or other methods, accuracy is of extreme importance because the decisions im-
pact the health of individuals. Hence it is more important in the medical field than in 
most other fields to test the model as thoroughly as possible. In the real world, it is 
nearly impossible to achieve 100 percent accuracy, a goal that physicians would like to 
achieve. Bear in mind that human decision making also cannot ensure 100 percent ac-
curacy. The best that we can hope for is a careful analysis of possible sources of error. 

EXERCISES 

1. Using the medical record excerpt in Figure 6.2, devise a data collection sheet that 
would extract information relevant to the record. If you think you will need certain in-
formation but cannot find it on the record, include it on the sheet. 

2. Give a copy of your data collection sheet and Figure 6.2 to two people and ask them to 
fill in the information on the sheet. Compare the results. 

3. Does the order in which training vectors are presented to a learning algorithm affect 
the results? Why or why not? 

4. Can you think of an empirical method for determining if your network has been 
trained using an adequate data set? 

5. Give an example in which it would be better to have false positives than false negatives. 
Give another example in which it would be better to have false negatives. 
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6. What is the most time-consuming part of establishing a neural network algorithm? Jus-
tify your answer. 
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Foundations of Computer-
Assisted Decision Making 

9.1 MOTIVATION FOR COMPUTER-ASSISTED 
DECISION MAKING 

The objective of computer-assisted medical decision making is to allow the medical 
professional to use the computer as a tool in the decision process. The decision-
making field is a broad one and encompasses several different approaches. Six general 
subdivisions exist (Shortliffe, Buchanan, and Geigenbaum): 

Databases 
Mathematical modeling and simulation 
Pattern recognition 
Bayesian analysis 
Decision theory 
Symbolic reasoning 

Figure 9.1 shows these subdivisions with areas of overlap and subdivisions. In this 
chapter, these topics are discussed in terms of biomedical decision making, although 
the techniques are general and can be used in any application. 

9.2 DATABASES AND MEDICAL RECORDS 

Table 9.1 shows the development of medical databases over a thirty-year period. Ex-
amples for each decade are described here. 

9.2.1 The First Decade (1970-1980) 

One problem inherent in any approach to decision making in medicine is the 
form of the medical record. Medical records include diverse components: quantitative 
test results, time series data such as ECGs and EEGs, medical images from a variety of 
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Decision Techniques 

Data-based Techniques Knowledge-based 
Techniques 

Decision 
Theory 

Pattern 
Recognition 
(BayesianAnalysis 
Neural Networks) 

Databases Mathematical Modeling 
Simulation 

Symbolic 
Reasoning 

Figure 9.1 Approaches to Automated Decision-Making. 

sources, and handwritten notes. For the past three decades, attempts have been made 
to organize these diverse data into a format that can be readily automated. 

Early work in developing the computerized medical record was done by Greenes 
et al. in 1970 at Massachusetts General Hospital. This work resulted in the COSTAR 
system, which was organized as a hierarchical database, and became the forerunner of 
MUMPS (Massachusetts General Hospital Utility Multi-Programming System), which 
is both an operating system and a computer language. MUMPS was used to create the 
Veterans Affairs Medical Information System (DHCP), which is still in use. 

PROMIS (problem-oriented medical information system) (Schultz, 1976; 
Walton, Holland, and Wolfe, 1978), developed at the University of Vermont in 1968, 

TABLE 9.1 Medical Database Developments 

Decade 1:1970-1980 
Patient Record Structures 

Hierarchical Database 
National Library of Medicine 

COSTAR 
Frames 
PROMIS 

MEDUS/A 
Time-Oriented Record 

ARAMIS 
Disease Databases 

Oncology 
Rheumatology 

Retrieval Structures 
Query Languages 

MEDIQ 
Decision Support 

HELP 

Decade 2:1980-1990 
Differential Diagnosis 

RECONSIDER 
DXplain 

Decade 3:1990-Present 
Online Databases 
National Library of Medicine 
Radiological Databases 

CHORUS 
Human Genome Project 
Electronic Transfer of Patient Data 
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was directed toward the problem of logical organization of medical data, as well 
as toward feedback on medical action. The approach includes acquiring a database 
on each individual, with a list of problems identified. A plan of action is then devel-
oped for each problem. Medical information is structured in units called frames, 
with the frames organized in a network structure. The system contains two data-
bases: the individual patient data and the medical knowledge base. A four-phase plan 
is utilized: (1) the starting point is the database from which a problem list is for-
mulated; (2) from the problem list, initial plans are made for each problem; 
(3) progress notes are also recorded; and (4) the database is used to devise a medical 
plan of action. 

The ARAMIS system (McShane and Fries, 1979; Fries, 1972; Wiederhold, Fries, 
and Weyl, 1975), originally developed at Stanford in the 1970s for data on arthritis, 
built on some of the ideas incorporated in PROMIS. It also introduced the impor-
tant concept of the time-oriented data record (TOD) in order to display the patient's 
progress and to permit the development of causal relationships. TOD consists of 
two distinct files: the main file of patient records, which has one record for each pa-
tient visit; and a transposed file, in which each parameter becomes a separate rec-
ord, hence emphasizing the change of the parameter over time. A three-
dimensional array structure is obtained when all patient data are incorporated into a 
series of standardized forms completed by the physician at each visit. The system 
utilizes several retrieval programs that provide statistical analysis and graphical dis-
play with scattergrams and histograms. There is also a program for clinical consulta-
tion. The idea of a most valuable variable (MVV) is used. The variable that contributes 
the most information is selected, and using this variable, the researcher analyzes the 
data. This variable is then discarded, and the procedure is repeated using the remain-
ing variables. 

The HELP program of Warner, Olmsted, and Rutherford (1972), also developed 
in the 1970s, was a medical decision-support system. It provides access to raw data, as 
well as all currently relevant decisions previously made on the patient. Five types of 
data are considered: 

COD data such as blood pressure and ECG parameters 
COM data consisting of comments 
BIN binary data from the patient history consisting of presence or absence of 
conditions 
ADD data that refers to another decision 
OLD data that refers to previous decisions 
Another medical database management system, MEDUS/A, was developed by 

Miller at Harvard beginning in 1977 (Miller and Strong, 1978). The data are organized 
in frames similar to the PROMIS system. MEDUS/A uses a modified hierarchical ap-
proach to structure the database. Patient data are subdivided into problems, which are 
further subdivided into evaluations. A query language, called MEDIQ, provides the 
user interfaces. The objective of the system is to develop a data management tool, not 
a tool of analysis. 

An early attempt to organize a tumor registry database was begun by Cabral and 
Wi-Huang (1978) at the University of Illinois. The data are decomposed into subsets of 
structured files. The database consists of an incidence file containing a small set of data 
on every tumor known to the system and two patient files. The patient data are divided 
into confidential and nonconfidential files. A hypothetical tree structure is created for 
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the data on each patient, with semantic pointers used to indicate the location of data 
relevant to the case. At about the same time Blum and Lenhard (1978) developed an 
oncology information system for hospital use. The database consisted of different 
classes of files: patient files organized by history number, diagnosis, or protocol; locator 
files organized by patient name; dictionary files for laboratory results; and system files. 
The key patient files included the abstract file which provided a summary of the dis-
ease, the census file with dates of admission and related information, the patient clini-
cal data file, request files which contained requests for printed output, and preformat-
ted files with plots and flow diagrams. 

Recurring themes in these approaches were the requirement of retaining physi-
cian notes, the necessity of tracking values that change over time, and the recognition 
of two distinct classes of information: patient data and medical knowledge data. They 
also pointed to shared problems. The database approach is effective only if large 
amounts of data are collected, which requires cooperation among many groups work-
ing in the same field. Problems include the occurrence of missing values and, at the 
time, the problem of storing and accessing large amounts of information. 

9.2.2 The Second Decade (1980-1990) 

RECONSIDER, authored by M.S. Blois et al. (1983) of the University of Cali-
fornia at San Francisco, is a prompting aid that suggests diseases for inclusion in the 
differential diagnosis. Among its advantages are its breadth of coverage (3262 diseases 
are currently represented in it), its simplicity (which makes its operation readily com-
prehensible to the user-physician), and its rapid response. It is specifically intended as 
an aid to memory, a feature in which computers are frequently superior to humans, and 
not as a substitute for human inference or judgment, where at the present they may not 
perform as well. The database for RECONSIDER was taken from Current Medical 
Information and Terminology (CMIT) data (Gordon, 1971). 

A system similar to RECONSIDER, DXplain was begun with the support of the 
American Medical Association (Barnett et al., 1987). Originally available through 
AMA/NET, it is now accessible via the World Wide Web (Elhanan, Socratous, and 
Cimino, 1996). Another commercial medical program that employs database retrieval, 
Iliad, uses frame-based structures (see Chapter 10). It also uses Bayesian and cluster 
analysis to arrive at consultative decisions (Lincoln et al., 1988). 

9.2.3 Current Approaches to Medical Databases 

Currently, database development tools are available on personal computers. 
Through expanded memory size and large disk storage capacity, it is quite feasible to 
develop useful medical databases using PC technology. 

The greatest current advance in access to data is the Internet. Numerous medical 
databases exist which are available to Internet users, including medical imaging data-
bases. This technology presents new challenges in maintaining confidentiality and in as-
certaining the accuracy of information that has been collected. 

An extremely useful database is MEDLINE, which provides access to the med-
ical literature either through the Internet or on CD-ROM. In addition, a growing num-
ber of databases exist on the Internet which can be freely accessed, including chemical 
abstracts, conference papers, dissertation abstracts, federal research in progress, phar-
maceutical abstracts, science citation index, and social science citation index. The Na-
tional Library of Medicine (NLM) maintains a number of bibliographic databases 
including AVLINE, BIOETHICSLINE, CANCERLIT, CATLINE, HEALTH, 
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HISTLINE, HSTAR, POPLINE, and TOXLINE and factual databases including 
CHEMID, DENTALPROJ, PDQ, and TOXNET. 

Another active area of database creation is radiology (Martinez et al., 1995). 
These databases in general contain archived images representing healthy and diseased 
conditions of various body systems. For example, a system called CHORUS (Collabo-
rative Hypertext of Radiology) was developed to facilitate collaboration among physi-
cians (Kahn, 1995). It consists of a computer-based radiology handbook developed 
and published electronically via the World Wide Web on the Internet. This system al-
lows physicians without computer expertise to read documents, contribute knowledge, 
and critically review the handbook's content by using a simple, graphical user interface 
from virtually any type of computer system. 

The most extensive biomedical database project is the Human Genome Project. 
Much effort continues to be directed toward selecting methods for representing the 
complex data structures involved. This project has already proven to be extremely use-
ful in locating new genetic markers for disease and will continue to be an area of ac-
tive research in the foreseeable future. A number of approaches have been used, in-
cluding the introduction of an object-oriented conceptual model (Hearne et al., 1994) 
and work on locus mapping (Guidi and Roderick, 1993). Access to the human genome 
database is available through the World Wide Web. 

Problems in implementing computerized medical records remain to this day. 
Most of these problems now center around compliance in recording data in a specified 
format, including the limitation of handwritten notes, compatibility among different 
recording systems, and privacy issues related to electronic transfer of medical records. 
Specific database designs are discussed in the next chapter. 

9.3 MATHEMATICAL MODELING AND SIMULATION 

In some specialized cases, biological processes can be represented by mathematical 
equations. This type of modeling has been in existence for some time and does not nec-
essarily involve the use of a computer. However, some equations can be evaluated with 
the aid of a computer that could not otherwise be evaluated, or only with great diffi-
culty. Simulation involves the representation of a process on the computer and may or 
may not involve actual mathematical modeling. 

One area where mathematical formulation is possible is in the administration of 
drugs, where dosage can be based on body weight and certain metabolic factors. 
Jelliffe, Buell, and Kalabe (1972) developed an early program to aid in the dosage of 
digoxin, a drug that is toxic at high levels. The model used body weight as the primary 
determining factor. The program was implemented on a time-sharing system that could 
be dialed by a physician seeking advice; this was a fairly revolutionary idea for its time. 
Another computer-aided drug dosage system by Shiner, also in 1972, utilized tests that 
check drug levels in the blood. The level of toxicity of the drug was determined by sta-
tistical analysis. A later program by Peck et al. (1973) was also developed to determine 
optimal digoxin levels. The method involved checking digoxin levels and attempting to 
keep them within safe bounds by altering the dosage. 

An early consultation program developed by Bleich (1972) provided information 
on acid-base disorders. It checked blood levels of sodium, potassium, and sugar, along 
with other constituents. The program was used chiefly as a teaching aid. Also in 1972, 
Lincoln developed a simulation model for leukemia chemotherapy. The system con-
sisted of four levels of abstraction: parameter identification, functional organization 
that showed the relationship among parameters, a teaching model, and a patient-
specific model. 



136 Chapter 9 ■ Foundations of Computer-Assisted Decision Making 

Bouckaert (1977) developed a model of the endocrine system based on Boolean 
matrices. In a Boolean matrix, the values are restricted to 1 and 0 indicating the pres-
ence or absence of a parameter. The system was simplified to represent only a two-
organ system. 

Peddicord (1977) developed a computational model of the cerebellar cortex and 
peripheral muscle based on physiological data from the cat. He begins with a mathe-
matical model of a single neuron and develops a model of the cerebellar loop. The re-
sult is a discrete space, continuous time (DSCT) representation. 

A 1976 paper by Walker proposes a framework for automatic model construc-
tion. The framework consists of a representation in which causal models can be writ-
ten, an algorithm for constructing a general causal model from empirical data, and an 
algorithm that uses a causal particular hypothesis. The fundamental problem addressed 
is the representation of knowledge. 

Simulation models continue to be applied to problems that can be restricted to 
systems for which enough information is available. Recent work in nonlinear dynam-
ics points to problems in representing systems that may be chaotic (Eberhart, 1989; 
Skinner et al., 1992; Guarini and Onofri, 1993). Many recent models have been devel-
oped, especially in cardiology, based on principles of chaos theory (Goldberger, 1989). 
The normal sinus rhythm of the heart is seen to be a chaotic function that at times 
shows reduced variability, which may be representative of heart disease (Lipsitz and 
Goldberger, 1992; Garfinkel et al., 1992). Debate arose regarding whether chaos rep-
resents the healthy or the diseased state. In our work (Cohen et al., 1994) we have 
shown that the normal heart can also be chaotic. It is a matter of the degree of chaos 
that differentiates the diseased heart from the normal. Application of chaos theory to 
analysis of electrocardiograms shows promise for development of diagnosis models 
(Cohen, Hudson, and Deedwania, 1996). In neurology, similar patterns are seen in the 
electroencephalogram; only here the underlying processes are understood to a lesser 
degree (Hoppensteadt, 1989; Freeman, 1987; Olsen, Truty, and Schaffer, 1988). Chaotic 
patterns have also been established in the firing of motor neurons (Mpitsos et al., 
1988). A number of studies have illustrated chaotic patterns in disease epidemics 
(Freeman, 1987), one of the early areas of chaotic investigation. (Chaotic analysis is 
discussed in Chapter 17.) 

In some areas, modeling can provide very accurate results. Unfortunately, most 
physical processes are too complicated to yield realistic mathematical representations 
at this stage of our knowledge. Problems approached using this methodology are 
highly structured and cannot deal with circumstances not anticipated in the model. 

9.4 PATTERN RECOGNITION 

Pattern recognition was one of the first methods used in medical applications and has 
found wide applications in diverse areas, from electrocardiogram to genetic sorting 
problems. Pattern recognition itself encompasses a variety of approaches. A common 
method of classification is known as discriminant analysis, discussed briefly in Chapter 
1 with additional details in Chapter 15. Another method of classification utilizes Bayes' 
Rule (see Chapter 15). Other pattern recognition techniques include parameter esti-
mation and supervised learning, which involve estimating parameters of known statis-
tical distributions, using the normal distribution, and nonparametric, unsupervised 
learning techniques such as Parzen windows and fc-nearest neighbor estimation and 
other clustering techniques. Duda and Hart (1973) and Young and Calbert (1974) pro-
vide detailed analyses of early pattern recognition techniques. 

In 1969, Kulikowski used a pattern recognition approach to diagnosis of hyper-
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thyroidism (Kulikowski, 1970). He used a sequential diagnostic procedure, determin-
ing at each stage the likelihood of the presence of the disease. A new set of variables, 
or features, was used at each stage, and all variables were used to make the diagnosis. 
Thresholds for the features were used to separate patients into three categories: those 
who did not have the disease, those where doubt remained, and those who probably 
did have the disease. In the second case, one of several tests was recommended. 

A major problem associated with the pattern recognition approach is the selec-
tion of features that will yield good discrimination. A second problem arises when the 
number of features, or the dimensionality, becomes too large. It then becomes advan-
tageous to select a set of principal features that lie in a subspace of much smaller di-
mensionality but still yield good discrimination. 

A 1974 summary of pattern recognition in medical diagnosis was compiled by 
Patrick, Stelmock, and Shen (1974) and contains over 120 references. Patrick lists the 
principal components of pattern recognition systems, which include feature extraction 
and various decision-making strategies, including Bayesian discriminant analysis, loss 
functions, nearest-neighbor rules, and clustering techniques. 

One common application of pattern recognition has been the analysis of time se-
ries data, such as electrocardiography and electroencephalography. A second impor-
tant area is image analysis. A paper by Raeside and Chu (1978) describes an appli-
cation to echocardiography, a type of ultrasound imaging. The authors attempted 
classification by similarity measures and found the results to be poor; they then turned 
to Fourier analysis. The first step in the procedure was again feature extraction. The 
classification methods considered were ^-nearest neighbor, Bayes' Rule, and nonpara-
metric statistical classification in which the parameters were ascertained from the data. 
It was found that while these three classification methods gave roughly equivalent re-
sults, the Fourier analysis yielded much better results than the similarity measure ap-
proach. 

In the 1980s, more complex pattern recognition systems were developed, includ-
ing Patrick's extension of Bayes' Theorem to permit multicategory classification 
(Patrick and Fattu, 1989). Other approaches include potential function approaches to 
pattern recognition (Duda and Hart, 1973; Cohen, 1985). (More details on this ap-
proach have been given in Chapter 4.) 

Pattern recognition methods have yielded very good results in a variety of appli-
cations, and many of these systems are in practical use today. However, the pattern 
recognition approach presents several inherent problems. Deciding which features 
should be selected to yield good discrimination is a difficult question and must be ap-
proached anew with each application. Often the number of features becomes large, 
leading to difficulties of dimensionality, which in turn requires a larger number of sam-
ples to provide valid statistical results. Verification of resulting classifications is also dif-
ficult. Final difficulties arise in the violation of independence assumptions. In addition, 
mutual exclusiveness and exhaustiveness of categories frequently do not apply in real-
world situations. 

9.5 BAYESIAN ANALYSIS 

9.5.1 Early Bayesian Systems 

In 1972, Warner, Rutherford, and Houtchens developed a strategy for patient his-
tory taking and diagnosis based on Bayesian analysis. A matrix of probabilities was 
used in which each row represents a diagnosis and each column represents a question 
to be asked of the patient. Each element in the matrix is a number indicating the like-
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lihood that a patient having the disease of that row should answer yes to the question 
of that column. Bayes' Rule is used to compute PD., the probability of having the ith 
disease, with A, = D, and B = g ; where PD. is the probability of having the ith disease 
and PQ. is the probability that a patient with the ith disease will answer yes to the yth 
question. The purpose was to direct the questioning process in the appropriate direc-
tion and avoid asking unnecessary questions. 

A system developed by de Dombai from 1972 to 1974 described diagnosis of ab-
dominal pain using the Bayesian approach (de Dombai et al., 1972,1974). The proba-
bilities used were compiled from a large patient population. Seven diagnoses were 
possible: appendicitis, diverticular disease, perforated duodenal ulcer, nonspecific 
abdominal pain, cholecystitis, small bowel obstruction, and pancreatitis. The work em-
phasizes the computer as a tool in helping the physician make the diagnosis. The com-
puter was found to arrive at accurate diagnoses in 91.5 percent of the cases, whereas 
the accuracy of the senior clinicians was 81.2 percent. As an interesting sidelight, the 
clinicians improved considerably during the study, having apparently benefited from 
the computer feedback information. 

In most practical situations, the assumptions of conditional independence usually 
do not hold. Nor is the assumption of mutual exclusiveness and exhaustiveness of dis-
ease categories usually valid. In addition, relevant conditional probabilities may not be 
stable over time and are dependent on the population from which they are drawn. Be-
cause of these considerations, Bayes' Rule must be applied with care. 

9.5.2 Bayesian Belief Networks 

Bayesian formulations can be generalized to produce Bayesian belief networks 
(Szolovits, 1995). The basic goal of these networks is to deal with uncertainties in di-
agnostic clue assessment while still considering the dependencies between elements in 
the reasoning sequence (Montironi, Bartels, and Hamilton, 1996). They have also been 
applied to radiological diagnosis (Haddawy, Kahn, and Butarbutar, 1994). In addition, 
attempts have been made to convert a rule-based system to a belief network (Korver 
and Lucas, 1993). 

9.6 DECISION THEORY 

Decision theory is a broad category of which Bayesian analysis is a part. Any attempt 
to make choices on an automated basis can be considered part of this field. Decision 
trees or networks are often used to enumerate all possible events, with each event rep-
resented by a node in the tree or network. The path chosen may be determined by the 
user or by a statistical decision. Usually, probabilities are not used directly but are 
weighted according to the risk or cost involved in each possible path. 

Markovian analysis is a technique often used in decision theory. A Markov 
process is one in which the current state is dependent only on the previous state and 
the transition function. Markovian processes may be time-dependent or may be con-
sidered to be in equilibrium. Markovian analysis is treated in detail in Kleinrock 
(1975). 

In a 1973 paper, Gorry described a system based on decision theory. His system 
consisted of a Phase I and Phase II program. The Phase I program considers tests for 
which the risk or cost is negligible, so that the benefit can be measured completely in 
terms of the amount of information to be gained. In Phase II, the inference function 
determines new information, and the question selection function determines which is 
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the best question to ask next. In Phase II, the program balances expected risk against 
expected benefit and selects the treatment with maximal expected value. A second ma-
trix contains probabilities of complications. 

A1976 paper by Gheorghe uses a Markovian decision model applied to respira-
tory disease. The advantage of the Markovian approach is that it gives a dynamic view, 
with the patient's condition represented as a state. Gheorghe identifies the three stages 
of diagnosis as taking measurements, reaching a conclusion as to the state of the 
process, and making a decision regarding a course of action to follow. The current state 
is assumed to depend only on the immediate past transition and the current state of 
knowledge about the system, thus making the process Markovian. The model can be 
represented as time-dependent, resulting in a continuous Markov process, but in prac-
tice it is usually considered to be steady state. The Markovian model is expanded to in-
clude AND/OR gates. 

Some major difficulties arise in attempting to assign numerical values to intangi-
bles, such as discomfort and time in the hospital. Overlapping or coincidental diseases 
generally are not well handled by these techniques. Attempts to incorporate time pa-
rameters into these systems also cause major complications. 

9.7 SYMBOLIC REASONING TECHNIQUES 

Development of knowledge-based expert systems is divided into early systems and 
second-generation systems (see Table 9.2). 

9.7.1 Early Expert Systems 

Artificial intelligence techniques have been under development since the advent 
of computers. In early artificial intelligence approaches, programs rely on qualitative 
judgments of heuristics rather than numerical calculation. Among the techniques are 

TABLE 9.2 Historical Development of Knowledge-Based Systems 

Early Systems Second-Generation Systems 
Causal Nets Deep Causal Systems 

Neuronal Muscle Control Heart Failure (Long) 
Rule-Based Models MDX 

MYCIN IDM 
MEDICO Reasoning with Uncertainty 
HEADMED Fuzzy Logic 
PUFF Adlassnig 
EMERGE Esogbue 

Rule-Based Shells Anderson 
EMYCIN Approximate Reasoning 
EXPERT EMERGE 

Frames Other Techniques 
Taking the present illness Bayesian Belief Networks 

Simulation Dempster-Shafer 
Kidney Disease Hybrid Systems 

Data-based Rule Deduction 
RX 

Theorem Proving 
Drug Interactions 

Combined Data, Knowledge-Based 
INTERNIST 
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methods of knowledge representation, heuristic search, natural language understand-
ing, and inexact reasoning. These methods are summarized in Winston (1977). 

Pople and Werner (1972) did early work in modeling neuronal muscle control ac-
tivities. Their system utilized an inferential processor that analyzed data and proposed 
hypotheses. The data were arranged in a causal net, and the program was written in 
LISP. 

In 1973, Gorry recommended a change to a new methodology and found that his 
previous programs could not handle the complexities that arise in actual situations, 
such as interactions among multiple diseases. He came to the following conclusions: 

1. Gross knowledge coupled with a large number of experimental facts and mini-
decision procedures seems to form the basis of clinical judgment. 

2. Knowledge used by experts is both factual and procedural. 
3. Knowledge is associated with certainty factors. 
4. A large part of this knowledge is not specifiable a priori. 
5. Experts seem to be able to recall all knowledge on the subject. 

The new prototype that Gorry proposed would utilize a simple language that would al-
low experts to give advice to the program. He cited the following areas for investiga-
tion: 

1. Concept identification 
2. Language development 
3. Explanation 

These areas subsequently have been researched by many workers. 
MYCIN, developed by Shortliffe in the mid-1970s, was a highly successful system 

for diagnosing infections and prescribing antimicrobial therapy (Shortliffe, 1973,1975, 
1976). It was the first rule-based system in medicine and derived from earlier work by 
Buchanan, Sutherland, and Feigenbaum (1969) on DENDRAL, a rule-based system 
for chemical synthesis. The basic information structure of these systems is the produc-
tion rule, described by Davis and King (1975) in detail. All of MYCIN's knowledge was 
contained in these rules, which consist of premises and conclusions. Each conclusion 
also contained a certainty factor, indicating the degree of confidence in that conclusion. 
The system had several interesting features. It had a good English interface, it was able 
to understand questions asked in ordinary English, as long as they were restricted to 
a specified subset of English; and it could recognize misspellings. The program could 
also answer questions regarding its own conclusions. Upon being queried, it would sup-
ply the line of reasoning followed in reaching a conclusion, and it would cite the rules 
that had been invoked. The program could also accept new rules entered by the user. 
The order of searching the rules was not predetermined; rather, it relied on the infor-
mation provided for each individual case to ascertain its path. The MYCIN system con-
tained approximately 200 inference rules. Use of the rules produced a depth-first 
search of an AND/OR goal tree, similar to PLANNER (Winston, 1977). The maximum 
number of rules for a single subgoal was approximately 30. Meta rules were used to 
suggest strategies. 

An outgrowth of MYCIN, EMYCIN was developed as a management system for 
Stanford's oncology clinic. The goal of EMYCIN was to set up an expert system shell 
that could be adapted to any application. 

Pauker et al. (1976) and Szolovits and Pauker (1976) presented a different ap-
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proach to analyzing the present illness. The program contained four components. 
(1) The patient-specific data comprised the computer's knowledge about the patient. 
(2) A supervisory program selected questions, sought and applied relevant advice, 
and generated and tested hypotheses. (3) A short-term memory allowed patient data 
to interact with general medical knowledge. (4) Finally, an associative, long-term 
memory was organized in frames that represented clinical states, physiologic states, 
or diseases. The frames were casually linked in a network. The decision strategy em-
ployed problem-solving techniques for searching the network. 

Another rule-based system developed in 1976 was MEDICO (Walser and Mc-
Cormick, 1976). It consisted of a knowledge base with long- and short-term memories, 
a rule interpreter, and a program that maintained the knowledge base. The long-term 
memory had two divisions: episodic memory which contained information about par-
ticular patients and events, and systemic memory which contained general knowledge 
about diseases, tests, and treatments. The knowledge was contained in inference rules. 
An inference rule has a set E of propositions and a proposition H that is the hypothe-
sis to be verified. E is a support for H if it triggers H. For example, E is often a patho-
logical condition that represents evidence for H, where H is a possible diagnosis. Each 
rule also has a strength measure indicating how far the supports go toward confirming 
the hypothesis. The short-term memory contains propositional descriptions of current 
clinical events as state models. The rule interpreter applies rules and switches between 
parts of the knowledge base. 

Wiener and Vinaver (1977) described a computer simulation of medical reason-
ing applied to kidney disease based on medical logic. The object was to indicate possi-
ble diseases on the basis of patient history, physical examination, and routine diagnos-
tic tests, and then to branch to specific investigations for more definite diagnoses. 
Classification among six diseases was attempted. Three stages were defined: the sus-
pected, the probable, and the diagnosed. Each stage was confirmed or rejected on the 
basis of present observations and previously confirmed inference. 

A major difficulty with rule-based systems is acquiring sufficient and reliable 
rules. The normal procedure is to interview experts in the field. In 1978, Blum and 
Wiederhold proposed a system, RX, for deducing rules from a medical database, 
ARAMIS. Since that time, a number of other researchers have followed this path. 

Automated theorem-proving was another artificial intelligence approach applied 
to biomedical data. In 1978, Darvis presented such a system for analyzing drug inter-
actions. The knowledge was represented by means of Horn formulas, which can repre-
sent a conclusion with multiple premises. The theorem prover in this system uses pat-
tern matching to find a conclusion that matches input data. 

In the same year, Weiss et al. (1978) developed a causal association network for 
glaucoma, CASNET. A loop-free network was used to describe causal relationships 
among variables. Multiple causes and effects are possible. A node in the network rep-
resents a pathophysical state, and an edge represents the causal connection. A pathway 
from the starting node to the terminal node gives a complete disease process. Progres-
sion along a pathway indicates increasing seriousness. The network is defined by the 
quadruple (S,F,X,N), where 

S = set of starting states (no antecedent causes) 
F = set of final states (no effects) 
X = mapping between states (causal relationships) 
N = total number of states 
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Certainty measures are used to represent confidence that a certain state exists. 
Transitions between states are given weights, and statistical likelihood measures are 
used to determine the optimal transition. 

In 1980, the techniques from CASNET were applied to a program for diagnosis 
and treatment of rheumatic disease. The researchers used an expert system shell, EX-
PERT, which like EMYCIN, is used to construct new consultative programs. EXPERT 
was also applied to the construction of knowledge bases in endocrinology, clinical 
pathology, neuro-ophthalmology, and internal medicine (U.S. Department of Health, 
1980). In addition, a psychopharmacological adviser called HEADMED was devel-
oped at the University of Texas at Galveston for dealing with psychiatric drugs (U.S. 
Department of Health, 1980). It was rule-based and recommended drug use for indi-
vidual patients. It followed the logic scheme laid out by MYCIN. 

Also in 1980, the first expert system to be put into clinical use for pulmonary 
function and ventilation management was PUFF (U.S. Department of Health, 1980). 
First tested at Pacific Medical Center in San Francisco, it contained approximately 250 
decision-making rules to interpret pulmonary function indications. Another segment 
of the program, VM, was used to provide advice concerning intensive care patients 
supported by ventilators. 

INTERNIST, an ambitious project to design a decision-support system for all of 
internal medicine, was undertaken by Miller, Pople, and Myers (1982). It combined 
database information with knowledge-based information to give consultative advice 
on a broad range of diseases. INTERIST-I was superseded by QMR (Miller, Masarie, 
and Myers, 1986), which uses the consultative portion with the DXplain database. 
QMR covers 600 diseases. 

9.7.2 Second-Generation Expert Systems 

Thus, by the 1980s, numerous medical expert systems had been designed and im-
plemented, but only one, PUFF, was in actual clinical use. A number of problems re-
mained with this approach, which in the late 1970s had virtually replaced the pattern 
recognition approach to computer-assisted decision making. Construction of the 
knowledge base was time-consuming and required interaction between the designer of 
the expert system and domain experts in the application area. Often communications 
problems arose. Once the knowledge base was developed, it required updating as new 
information became known. One of the major strengths of the knowledge-based ap-
proach was the separation of the reasoning process, handled by the inference engine, 
from the domain knowledge. In theory, this allowed the application to be changed by 
simple replacement of the knowledge base without altering the program. This rarely 
happened, as each inference engine was tuned toward specific features of its initial ap-
plication. 

Another common thread in these early systems was the recognition of the role of 
uncertainty in medical decision making. MYCIN dealt with uncertainty by including 
certainty factors that indicated the degree of confidence that an implication was cor-
rect. As it turns out, uncertainty in reasoning is much more complex and arises in many 
parts of the expert system, including patient data and the knowledge base. Criticisms 
were also raised regarding the production rule format, which generated rules known as 
heuristics. It was argued that this was not really the way the people reasoned and that 
what was needed were more causal and deep reasoning models rather than ad hoc 
rules. In the 1980s, researchers attempted to address some of these issues. The systems 
are often referred to as second-generation expert systems. 
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9.7.2.1 Causal Systems. A new approach to expert system development in-
volved the use of deep reasoning as opposed to heuristic reasoning. Deep models are 
more objective in that they model the structure and function of the system. Deep mod-
els are also called causal models because they apply cause and effect reasoning. Not all 
causal models, however, are deep models. An example of a causal model that is not 
deep would be a relationship such as "angina causes elevated blood pressure." Al-
though this is a causal relationship, it is not based on the mechanisms of the disease. 
Deep causal models not only involve relationships between diagnosis and symptoms, 
but also describe the behavior of the modeled system. For a discussion of causal and 
deep reasoning, see Torasso and Console (1989). 

CASNET, as described earlier, is an example of a causal system that does not uti-
lize deep reasoning. It probably represents the earliest attempt to design a causal sys-
tem. In the early 1980s, Reggia, Nau, and Wang (1983) proposed another causal model 
that established causal relationship between findings and diagnostic possibilities. 

In biomedical applications, it is very difficult to develop deep causal knowledge 
because of the complexity of biological systems. Basically, a causal model is repre-
sented by states of a system and relationships among the states, as we saw in CASNET. 
The relationship differ depending on the system. (For a discussion of causal models 
and deep reasoning, see Chapter 10.) 

In 1981, Patil described a system, ABEL, which combined heuristic reasoning and 
deep reasoning and had three levels of knowledge representation: pathophysiological, 
intermediate, and clinical. The clinical level is represented using heuristic knowledge. 
In 1983, Long developed a causal system for treatment of heart failure in which 
temporal data were an important component in the causal relationships. MDX 
(Chandrasekaran and Mittal, 1983) also uses causal knowledge but not directly in the 
reasoning process. IDM (Fink, Lusth, and Duran, 1985) uses causal knowledge for 
cases, which could not be solved using heuristic knowledge. 

A paper by Miller (1987) surveys causal approaches in artificial intelligence sys-
tems that use qualitative causal models as opposed to quantitative causal models (i.e., 
mathematical models). A study by Jang (1994) combines association-based reasoning 
and causal reasoning in the same system. A recent approach uses a fuzzy state space 
approach to medical diagnosis (Bellamy, 1997) in an attempt to incorporate uncer-
tainty into the model. 

9.7.2.2 Reasoning with Uncertainty. The development of knowledge-based 
expert systems in medicine began about a decade after Zadeh's introduction of fuzzy 
logic (Zadeh, 1965) with the MYCIN system. Although MYCIN did not use fuzzy logic 
directly, one of its major components was certainty factors, an early recognition of the 
major role that uncertainty plays in medical decision making. In the two decades since 
the introduction of MYCIN, knowledge-based medical expert systems have abounded. 
Virtually all of these systems have made some attempt to deal with uncertainty, with 
some using fuzzy logic directly. Numerous other approaches to approximate reasoning 
have also been employed, along with other methods that are more ad hoc in nature. 

One of the earliest medical expert systems to use fuzzy logic was developed by 
Adlassnig (1980) in which he applied theoretical principles from fuzzy logic to a diag-
nostic problem. Anderson et al. (1982) designed another very early fuzzy medical ex-
pert system. Esogbue and Elder (1983) also employed fuzzy logic techniques to de-
velop a fuzzy mathematical model for medical diagnosis. EMERGE (Hudson and 
Cohen, 1988) used techniques from approximate reasoning in a knowledge-based sys-
tem for emergency room admissions of patients with chest pain. This system was begun 
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in the late 1970s with a modified production rule format and was updated to include 
approximate reasoning methods in the mid-1980s. EMERGE can also be used as an 
expert system shell for the development of other applications. Another expert system 
shell that could handle both exact and inexact reasoning was developed by Leung, 
Wong, and Lam (1988). Sanchez (1989) analyzed fuzzy inference in detail in a case 
study. 

Another popular approach uses the idea of a possibility measure rather than a 
probability measure, introduced by Dubois and Prade (1980) and illustrated in a med-
ical application by Vila and Delgado (1983). A later use of possibility theory to develop 
an expert system for the analysis of evoked potentials combines possibility theory with 
heuristic rules (Brai, Vibert, and Koutlidis, 1994). 

In the 1990s, approaches to reasoning with uncertainty continue to abound. 
Bayesian Belief Networks are used for this purpose, along with the statistical-based 
Dempster-Shafer approach. Recent biomedical applications of fuzzy set theory and 
fuzzy logic include a system for diagnosis of coronary artery disease (Ciox, Shin, and 
Goodenday, 1991) and MEDUSA, a fuzzy expert system for the diagnosis of abdomi-
nal pain (Fathi-Torbaghan, 1994). 

Fuzzy logic had been applied successfully in many commercial devices. Hess 
(1995) discusses the idea of applying this technology to medical devices and Rau et al. 
(1995) examine potential applications of fuzzy control in medicine. 

9.7.2.3 Hybrid Systems. Recently, many researchers have abandoned the 
idea of one technology in favor of a combination of approaches. The number of these 
combined systems, denoted hybrid systems, have grown in the last few years (Kandel 
and Langholz, 1992; Cohen, 1992). 

9.8 SUMMARY 

Beginning in the 1970s, symbolic techniques replaced pattern classification as the dom-
inant method for developing biomedical computer-assisted decision-support systems. 
For the next decade, the majority of new systems were developed using symbolic tech-
niques. This trend began to change in the mid-1980s with the resurgence of the neural 
network approach, spurred by the development of new theoretical approaches and in-
creased computing power. However, both of these methodologies remain important 
tools, with the choice dependent on the nature of the problem and the sources of do-
main knowledge available to tackle the problem. In some cases, combination of the 
two methods into a hybrid system affords an opportunity to take advantage of all 
sources of domain knowledge. 

EXERCISES 

1. If you were designing a computer-assisted decision-support system for determining the 
presence of diabetes, which of the above approaches would you use? Why? What kinds 
of parameters would you need to include? 

2. For which of the approaches discussed in this chapter would it be easiest to maintain a 
system that is up to date? Explain. 

3. Find an article that has appeared in the literature within the last year and categorize it 
into one of the six areas given. 

4. Assume you are designing a new medical device for monitoring patient status. Which 
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approach would you take? For this application, what are the most important factors to 
consider? 

5. Which of the above approaches would be able to handle nontextual data such as elec-
trocardiograms and medical images? Justify your answer. 
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Knowledge Representation 

In this chapter, we discuss general types of knowledge representations that are useful 
in decision-support systems. For each approach, a brief background will be provided, 
followed by details of the structure of the representation. The approaches are illus-
trated with biomedical examples. 

10.1 PRODUCTION RULES 

10.1.1 General Structure 

Production rules were the first knowledge representation used in so-called expert 
systems. The first example was DENDRAL (Buchanan, Sutherland, and Feigenbaum, 
1969), a program that gave advice in chemical synthesis. DENDRAL was soon fol-
lowed by MYCIN (Shortliffe, 1976), the first medical expert system to use a knowl-
edge-based approach. 

Production rule systems contain a situation recognition part and an action part 
(Winston, 1977). The production can be thought of as a situation-action pair in which 
the first part is a list of items to watch for and the second is a list of things to do. An-
other way to look at the situation is in terms of inference structures: "If this condition 
holds, then this action is appropriate" (Barr and Feigenbaum, 1981).The initial concept 
of a production rule can be represented as: 

IF Condition A AND Condition B AND Condition C . . . 
THEN Action a 

The condition part of the rule can have several components that are ANDed together. 
For example, a rule from the MYCIN (Shortliffe, 1976) system is: 

IF The site of the culture is one of those sites that are normally sterile 
AND 
The portal of entry of the organism is the same as the site of a prior organism with 
the same identity as this current organism 
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THEN There is further suggestive evidence (0.3) that each of them is a prior organism with the 
same identity as this current organism 

This type of inference is said to be in conjunctive form. 
How, then, does the system work? An attempt is made to confirm the conditions. 

If all the conditions are found to be true, then the rule fires, and the conclusion is in-
voked. The computer algorithm that handles these functions is referred to as the infer-
ence engine. The process has essentially three phases: matching, conflict resolution, and 
action. However, in this process a number of complicating factors arise, which we shall 
now examine. 

10.1.2 Methods of Confirming Conditions 

10.1.2.1 Matching. As seen in the preceding example, matching case data 
with rules can be complex. In the MYCIN system, the general procedure was to ask the 
user questions that were directed at confirming conditions. Thus the inference engine 
collects information for the case under consideration from questioning the user. Part 
of a typical run from MYCIN is given below, with the user response preceded by ** 
(Shortliffe, 1976): 

From what site was the specimen for CULTURE-1 taken? 
**BLODD 

=BLOOD 
How many days ago was this blood culture (CULTURE-1) obtained? 
**2 
I will refer to the first offending organism from this blood culture (CULTURE-1) as: 

O R G A N I S M - l » > » 
Enter the identity (genus) of ORGANISM-1: 
**UNK 
Staining characteristics of ORGANISM 1 (gram): 
WHAT IS THE STAIN OF ORGANISM-1? 
Expected responses are: ACIDFAST GRAMPOS GRAMNEG 
Enter HELP for list of user options. 
**GRAMNEG 
IS ORGANISM-1 a rod or coccus (Etc.): 
**ROD 

This excerpt points to a number of issues that arise in the use of production rules. 
10.1.2.1.1 NATURAL LANGUAGE PROCESSING. MYCIN allows the user to en-

ter English words, such as BLOOD and GRAMNEG. However, general natural lan-
guage processing is not required here. The allowable responses are self-limiting, which 
we see explicitly in the list provided for possible staining responses. Also, the system 
can recognize minor misspellings, such as BLODD for BLOOD, a process that is again 
simplified by the restriction of possible responses. There are expert systems that do 
more extensive natural language processing, but in general, because of the restriction 
of knowledge-based systems to domain-specific applications, the language will be a 
subset of the natural language. For more details on natural language processing, refer 
to Barr and Feigenbaum (1981). 

10.1.2.1.2 PARTIAL MATCHING. In the questioning process, information is ac-
cumulated, which is then matched with the information in the conditions. In the exam-
ple given here, either the condition is matched or it is not. As we will see later, because 
of the complexity of medical data, it is possible to have partial substantiation of con-
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ditions, or degrees to which the conditions exist. Systems that allow this type of partial 
fuzzy matching will be discussed in Chapter 16. 

10.1.2.1.3 DATA-DRIVEN APPROACHES. AS an alternative to questioning, a 
rule-based system can be data-driven. By this we mean that the user can enter infor-
mation pertaining to the case, and the inference engine will then attempt to match this 
information with conditions in the production rules. If some of the conditions are 
matched, the program may then ask the user additional questions to fully substantiate 
the conditions. However, a primary difference with the data-driven approach is that the 
data entered determines the starting point for the rule search. We will see an example 
of a data-driven system, EMERGE, in Section 10.1.4. Data-driven searching strategies 
will be discussed in Chapter 12. 

10.1.2.2 Conflict Resolution. Data on the specific case is matched with the 
conditions in the rules. Two major problem areas are: 

1. In what order should the rules be searched? 
2. What if more than one rule is confirmed or substantiated? 

We will discuss the first problem in the following section. With regard to the second 
question, some strategies include (Winston, 1977): 

All production rules are arranged in one long list. The first matching production 
is the one used. The others are ignored. 
The matching production with the toughest requirements is the one used where 
toughest means the longest list of constraining premise or situation elements. 
The matching production most recently used is used again. 
Some aspects of the total situation are considered more important. Productions 
matching high-priority situation elements are privileged. 
A number of other approaches to conflict resolution among substantiated rules 

have been tried (Barr and Feigenbaum, 1981): 

The highest priority rule, in which priority is determined by the system designer. 
The most specific rule, that is, the one with the most detailed condition part. 
The rule that refers to the element most recently added to the context. 
A new rule, that is, a rule-binding instantiation that has not occurred previously. 
An arbitrary rule. 
Not to choose, explore all applicable rules. 

Usually, the objective of the expert system will determine the conflict resolution 
strategy. If the objective is to establish a differential diagnosis, then all substantiated 
rules are considered. 

10.1.3 Rule Searching Strategies 

If production rules are of the conjunctive form, like those we saw earlier, then the 
searching of the rules can be thought of as an AND/OR tree. The conditions of a sin-
gle rule represent an AND node, and the combination of this rule with other rules rep-
resents OR nodes. The OR conditions are also referred to as disjunctions. Figure 10.1 
shows an AND/OR tree of production rules, with ft presenting facts and pi represent-
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fi ft fs fi fl f» /» /l0 / " /l2 

Figure 10.1 AND/OR Tree of Production Rules. /, represents facts, p, represents 
productions, AND nodes are marked with an arc. 

ing productions. For example, consider the following example which corresponds to 
part of the AND/OR tree in Figure 10.1: 

EXAMPLE: Production Rules 

Rule p\ 
IF Possible MI 
AND Shock 
AND Abnormal mental status 
THEN Admit to CCU 

Rule p2 

IF Pain is unremitting 
AND Pain is excruciating 
THEN Possible MI 

Rule p 4 
IF BP < 100/60 
THEN Shock 

Patient Facts 
fi. Abnormal mental status 
fy Pain unremitting 
fy Pain excruciating 
fy BP 80/40 

Then the result will be the confirmation of rule px. 

Looking at production rule systems in this manner has limited usefulness because 
many other factors come into play. Yet it can give an idea as to whether the search is 
broad and shallow or narrow and deep. 

General rule searching strategies fall into two categories: forward-chaining and 
backward-chaining. In forward-chaining, the system works from known facts to de-
duced facts. In backward-chaining, a conclusion is hypothesized, and the system uses 
the production rules to work backward to obtain facts to support the conclusion. If the 
idea is to determine all that can be deduced from a set of facts, as in differential diag-
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nosis, then the system must run forward. If, on the other hand, the objective is to ver-
ify or dispute a specific conclusion, the backward-chaining is more appropriate. 

As we have already seen, these are not the only possibilities. In some systems, the 
response to one rule may determine the next rule that is fired. For instance, the action 
portion of one rule may match the condition portion of another rule. Many systems 
also contain meta rules, which are production rules that address the general strategy of 
the inference process and alter the order in which the rules are searched. More details 
regarding inference engines and searching strategies will be given in Chapter 12. 

10.1.4 Expanded Production Rule Systems 

Production rule structure can be expanded in a number of directions. Both the 
left-hand side (conditions) and the right-hand side (action) of production rules have 
been extended. Here we consider an example from the EMERGE system (Hudson 
and Cohen, 1988), which allows additional structures in the left-hand side. 

Instead of restricting conditions to the conjunctive form, three forms are allowed: 
conjunctive (AND), disjunctive (OR), and COUNT n, in which COUNT requires n 
conditions out of a list of m to be substantiated. We can represent these conditions, de-
noted standard conditions (SC), as follows: 

SQ(m, m) = AND 
SC,(2,m)^OR 
SQ(n, m) = COUNT n, 1 < n < m 

where m is the number of conditions in a production rule and i is the number of the 
SC. SCi(n, m) assumes the value to be true or false, depending on whether or not the 
standard conditions hold. Examples from the EMERGE chest pain rule base include: 

SC!(1,5) 
ANY OF 

Abnormal mental status 
Cold, clammy skin 
Gray, cyanotic skin 
Weak peripheral pulses 
Urinary output < 30 cc/hr 

SC15(2,3) 
2 of 3 

Sweating 
Nausea 
Dizziness 

SC29(2,2) 
ALL OF 

Pain excruciating 
Pain unremitting 

Thus we see that the SC function includes AND and OR, and introduces the new log-
ical construct COUNT «.These constructs are then combined into rules such as the fol-
lowing: 
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Rule 10 (CF 0.9) 
IF ALL OF 

Blood Pressure < 100/60 
SCt 

THEN patient should be admitted to the CCU 

This rule therefore results in a conjunctive combination of a single finding with a dis-
junction of five findings. 

10.1.5 Certainty Factors 

In the examples from the MYCIN and EMERGE rule bases, we see that both in-
clude a certainty factor. Certainty factors were an early recognition of the necessity of 
dealing with uncertain information in medical decision-support systems. The certainty 
factors for these two systems were used differently. Each will be described briefly. 

In MYCIN (Shortliffe, 1976), each production rule includes what is termed a cer-
tainty factor, with a value between 0 and 1, inclusive. The certainty factors are com-
bined using the AND/OR tree description discussed earlier. At AND nodes, the small-
est certainty factor on the conditions branches is multiplied by the certainty factor for 
that rule. The result is then passed upward in the tree. At OR nodes, the certainty fac-
tors on the branches reinforce each other. For one branch, the overall certainty is the 
certainty factor (CF) associated with that branch. The remaining distance to total cer-
tainty is (1 - CFi). For a second branch, these factors are multiplied and subtracted, 
that is, (1 - CFX X CF2). 

Similar certainty factors are used in EMERGE, although the derivation is some-
what different. Computation of the certainty factor is derived from decision trees es-
tablished during a major project called Criteria Mapping (Greenfield et al., 1977; Hud-
son, 1983). The goal of the project was to develop flow diagrams for the purpose of 
evaluating emergency room procedures. These flow diagrams were subsequently used 
to develop the EMERGE knowledge base. 

In the EMERGE system, three responses are possible—yes, no, and ?—the last 
response indicating that no information is available regarding that item. A sample tree 
for the situation when all information is known is shown in Figure 10.2. In this case, the 
certainty of an admissible disease is read from the end of a branch, with no calculation 
required. For example, a patient with atrial fibrillation with no history who is not in 
shock and who shows the atrial fibrillation resolved on the second ECG would have a 
certainty factor of 0.2. Note that spanning the tree may include the substantiation of 
several rules. If only some of the information is known, the certainty of an admissible 
disease must be calculated. The values for branches that are known to have affirmative 
responses are changed to 1.0, whereas those that are known to have negative responses 
are changed to 0.0. The certainty factor for each branch is calculated by multiplying all 
values along that branch. An overall certainty factor must then be calculated for all 
possible branches. The following definitions are used: 

CF = 1 (admissible disease) 
CF = 0 (not an admissible disease) 
CFx and CF2 = CF^CF;, (multiplication) 
NOT (CF) = 1 - CF (not admissible = 1 - admissible) 

A consistent logical OR can be defined by applying deMorgan's laws: 

CFi OR CF2 = CFi + CFx - CFj*CF2 
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Figure 10.3 shows a tree for a patient with atrial fibrillation who is not in shock, 
with the atrial fibrillation resolved on the second ECG but with no information per-
taining to the patient's history. There are only two reachable admissible disease nodes. 
For the first admissible branch, the multiplication yields 0.035; the second yields 0.06. 
The resulting overall certainty factor is 0.035 + 0.06 - 0.035*0.06 = 0.0929. 

These ad hoc approaches deal with some aspects of uncertain information, but 
the general concept is quite complex. More inclusive methods for reasoning with un-
certain information are discussed in Chapter 16. 

10.1.6 Advantages of Production Systems 

At the time knowledge-based systems using production rules were introduced, 
developers claimed that this method possessed advantages over other methods cur-
rently in use that were either algorithmic or data-based pattern recognition systems. 
These advantages included the following: 

Modularity: The knowledge base was separate from the inference engine. In 
other words, in theory, a general inference engine could be developed which 
would function with any knowledge base, whether the domain was diagnosis of 
the cause of abdominal pain or oil prospecting. This is not the case with algorith-
mic programs where the algorithm is developed for the specific project at hand. 
It is also true, however, of pattern classification and neural network systems, in 
which new models are developed using the same algorithm by replacing the data-
base. 
Uniform knowledge structure: The production rule format provided a uniform 
structure into which many applications could easily fit. This uniformity of struc-
ture made it possible to change knowledge bases without changing the inference 
engine. 
Human-like reasoning: As the rules for these systems were developed in con-
junction with one or more experts in the problem domain, the systems gave the 
appearance of reasoning in the same manner as humans. The situation was mod-
eled as a set of IF-THEN rules that are familiar to everyone from elementary 
logic. 
Explanation capabilities: Because of the rule structure and the ability of the pro-
gram to keep track of the rule searching order, explanations could be provided 
for each consultation by regurgitating the rules that had fired. Thus the result 
seemed to have the force of logic behind it, unlike pattern classification systems 
in which recommended classifications seemed to appear by magic. 

10.1.7 Disadvantages of Production Systems 

Although these advantages advanced the artificial intelligence approach, there 
were also a number of disadvantages. 

Difficulty of following flow: It is difficult to follow the flow of rule invocation 
since in most systems it changes for every run as the data presented cause the 
path through the rules to alter. For this reason, it is also difficult to completely de-
bug production systems with large numbers of rules. 
Inefficient: Production system substantiation is not an efficient process from a 
computer standpoint owing to the high level of symbolic, as opposed to numeric, 
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processing. In addition, symbolic information requires additional storage. As 
computers have become faster with larger memory capacities, these factors are 
no longer as significant. 
Knowledge base development: Probably the most serious drawback to the 
knowledge-based approach is difficulty in developing the knowledge base. In 
general, the system designer must communicate at great lengths with one or more 
experts in order to develop the required rules. This process is fraught with diffi-
culties. There are often communication problems across disciplines, different ex-
perts may seriously disagree on specific rules, and once the rule base is complete 
it must be updated to include new knowledge. 
Domain specificity: Although the inference engine may theoretically be general, 
in practice most inference engines are geared to take advantage of certain as-
pects of the domain knowledge. Thus the process of changing the knowledge base 
is not completely straightforward. The domain specificity of the knowledge base 
makes the development of each new application a new project subject to the dif-
ficulties we have mentioned. 
Restrictions in production format: The original production rule format was pre-
sented to experts as the structure into which the knowledge should be placed. 
This suggestion forced the expert to think in terms of IF-THEN conjunctions, al-
though in reality this may not be the way decisions are reached. Many systems 
have expanded this structure to incorporate more types of logical constructs, but 
it is still very difficult to determine the actual human decision-making process. As 
we shall see in Chapter 16, fuzzy logic and approximate reasoning may play sig-
nificant roles in our thinking processes. 

10.1.8 Areas of Applications of Production Rule Systems 

In what areas does it make sense to use the production rule format? Some gen-
eral guidelines include the following: 

Applications with a body of factual information rather than a unified well-
understood theory: For example, a problem in mechanics is suited to an algorith-
mic structure since the underlying principles are well known. A problem in prog-
nosis of heart failure is better suited to a knowledge-based approach because a 
sufficiently detailed model is not available. 
Processes represented as a set of independent actions rather than dependent sub-
processes: The production rule format allows actions to be taken independently. 
The algorithmic approach combines dependent subprocesses into a model of the 
whole. 

10.2 FRAMES 

10.2.1 General Structure 

The term frame was introduced in 1975 by Minsky. The basic idea was that when 
a person enters a situation, he or she already has considerable knowledge about the 
situation that has been gained through previous experience. The objective of the frame 
was to provide a structure that would contain general information that could then be 
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adjusted to fit the particular situation. Consider the following example for patient 
monitoring in the operating room (OR): 

OR Monitoring Frame 
Specialization of: 
Types: Range: 

Physical characteristics 
Surgery 

Monitoring 
(electrophysiological monitoring, blood gas monitoring, 

OR monitoring . . .) 
(body weight, height, age) 
(abdominal, chest, plastic) 

The general frame is then specialized for specific instances: 

John Smith Monitoring Frame 
Specialization of: 
Physical characteristics: 
Surgery 

OR Monitoring Frame 
(185,70,67) 
(abdominal) 

10.2.2 Inheritance 

The specific frame inherits properties from the more general frame, but more of 
the slots are filled in with additional information. It was felt that this structure more 
closely resembled human information processing in that one does not start from 
scratch on each new problem but rather employs examples of similar situations that 
have been previously encountered. Subframes inherit characteristics of more general 
frames. Slots in frames may also be filled in with default values. Default and inherited 
values are easy methods for filling in slots since they do not require reasoning 
processes. If neither of these methods is appropriate, slots may be filled in by means of 
slot-specific heuristics (Barr and Feigenbaum, 1981). Another method is the use of trig-
gers that are invoked when the value of a slot is found or changed. These triggers im-
plement procedures that are data-driven. This triggering mechanism has been used in 
frame-based medical decision aids (Szolovitz, Hawkinson, and Martin, 1977; Aikins, 
1979). It is a useful approach in ruling out specific diagnoses and thus can be used in 
systems that provide differential diagnoses lists. In this process, specific symptoms or 
other facts invoke triggers. 

This idea of inheritance was a precursor to object-oriented programming and 
databases that will be discussed in more detail in the next section. The frame is essen-
tially equivalent to an object in the object-oriented approach. Although the idea of 
frames is intuitively pleasing, it turns out that it is quite difficult to reason with infor-
mation structured in this way. 

10.2.3 Example of a Frame-Based Decision-Support System 

An example of frame-based information is the HELP systems (Bouhaddou, 
Haug, and Warner, 1987). A HELP frame can represent the selection algorithm of a 
query to the patient database. The HELP frames support complex queries involving 
data from multiple sources and can also be used for Bayesian calculations. A method 
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TITLE: Lung consolidation 
TYPE: Interpretation 
FINDINGS: 
a. Coarse crackles (rales) 
b. Bronchial breath sounds 
c. Egophony (E-a changes) 
d. Increased vocal fremitus 
e. Dullness to percussion 
f. Whisper pectoriloquy 
g. CSR - lung infiltrate with alveolar pattern and air 
bronchograms 

True if g or if (a and b) and (c or d or e or f) Figure 10.4 Clustered Frame with Boolean 
Decision Logic (Lincoln et al., 1988). 

for reasoning with frame information is seen in HELP (Yu et al., 1988) with a similar 
approach in Iliad, a commercial decision-support system. The system uses clustered 
frames with Boolean decision logic and Bayesian frames that combine several clus-
tered frames. Examples are shown in Figures 10.4 and 10.5 (Lincoln et al., 1988). 

TITLE: Pneumonia 
TYPE: probability 

a priori (prevalence): .025 

FINDINGS: 
a. @7.141.112 
b. @7.149.117 
c. @7.141.113 

else 
Pleural effusion 

Lung consolidation 
Signs of systemic infection 
Pleuritic chest pain 

d. 7.141.119 Hypoxemia 
e. Dyspnea 
f. Cough with sputum 

else 
g. Cough 

Disease 
.99 
.90 
.25 

.05 

.40 

.40 

.90 

.90 

No disease 
.07 
.20 
.02 

.01 

.10 

.10 

.15 

.25 

Figure 10.5 Bayesian Frame with Several Clustered Frames (Lincoln et al., 1988). 

10.3 DATABASES 

A distinction is made here between databases and knowledge bases. In general, data-
bases contain information in raw form, that is, textual information. Textual information 
includes all of the data types discussed in the Overview. Even image databases contain 
images that are represented as numbers in the form of pixels or voxels. Knowledge 
bases, on the other hand, contain symbolic information that shows relationships among 
variables, such as the rules and frames discussed earlier. As data files become larger 
and more complex, efficient means for organizing them become crucial. The primary 
physical structure of computer storage traditionally consisted of records, made up of 
fields, and files made up of records. Although this is an efficient storage mechanism, it 
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is not efficient for retrieval purposes. The organization of databases is viewed from a 
logical perspective for retrieval purposes rather than from a physical storage perspec-
tive. Typically, three types of relationships occur among entities in databases: one-to-
one (a patient has one social security number), one-to-many (a physician has many pa-
tients), and many-to-many (a patient has multiple tests, and each test is ordered for 
multiple patients), although higher order relationships are possible. 

Traditional database structures included hierarchical structures in which fields in 
the top level referred to additional databases at lower levels. Figure 10.6 shows a hier-
archical database. A more efficient approach is the relational structure described in the 
following section. 

Demographic 
Information 

Laboratory 
Data 

Identification 
of Laboratory 

Patient 
Information 

Test 
Results 

Physical 
Exam Parameters 

Current 
Exam 

Patient 
History 

Previous 
Exams 

Figure 10.6 Example of a Hierarchical Database Design. 

10.3.1 Relational Databases 

Many modern databases are relational, including the UNIX-based INGRES and 
the Microsoft Access database. Relational databases consist of entities and relation-
ships, both of which are represented by tables. There is a firm mathematical basis to the 
relational structure. A number of definitions are required (Date, 1977): 

Definition: Given a collection of sets DlyD2,. . ., Dn, R is a relation on those n sets if it is a set 
of ordered n-tuples < άχ,άι, ■ ■ -,dn> such that dt belongs to Dt. Du . . . are the 
domains of R. n is the degree. 

Figure 10.7 shows sample relations. The rows in the figure are the tuples, and the 
columns are the attributes. There is no ordering among tuples and usually no ordering 
among sets. Some columns may have the same domains as other columns. The number 
of tuples is the cardinality. The relation is normalized if every value in the relation is 
atomic (nondecomposable). Comparing to the traditional field/record/file physical 
storage, we find that the attribute is a field, the tuple is a record, and the relation is a 
file. 

Each relation must have a key that uniquely distinguishes a tuple. More than one 
attribute may be used as a key. In the patient information relation, the Ptinfo is the 
unique identifier. In the example given, the patient name would also be a unique iden-
tifier. There are two rules pertaining to the interpretation of keys: 
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PtID 
4352 
2289 
7701 
8813 
2222 
9128 

Patient Information Relation (Ptinfo) 

PtName 
J. Smith 
M. Leeds 
S. Jones 
D. Jay 
G. Street 
L. Love 

DOB 
7/1/33 
2/13/46 
11/24/56 
4/3/29 
1/1/50 
5/18/12 

DateAdmitted 
9/15/96 
10/2/96 
9/30/96 
8/25/96 
10/3/96 
7/31/96 

Physician Information Relation (Phyinfo) 

PhyD> 
11531 
92038 
53950 

PhyName 
W. Holly 
K. Klein 
A. Wall 

Hospital 
County General 
Glenhaven 
County General 

Patient/Physician Relation (Ptphy) 

Phyl D 
11531 
11531 
11531 
53950 
53950 
92038 

PtI D 
2289 
4352 
9128 
7701 
2222 
8813 

Days_in_Hospital 
3 
9 
1 
12 
7 
2 

Figure 10.7 Sample Relations. 

Integrity Rule 1 (entity integrity): 
No component of a primary key value may be null. 

Integrity Rule 2 (foreign key): 
Definition: A given domain may be designated as primary iff 3 some single-attribute primary 

key defined on that domain. 
Let D be a primary domain, and let Rt be a relation with an attribute A defined on D. Then, 
each value of A in R must be either (a) null or (b) equal to V, where V is the primary key value 
in R2 with the primary key defined in D. 

The second rule is the basis for the relationship among tuples. For example, in Figure 
10.7, the physicians are linked with the patients through the patient ID key that ap-
pears in the tuples of the patient relation and the physician relation. 

The extension of a given relation is the set of values appearing in the relation at 
any given instant. The intention of a given relation is specified in the relational scheme 
(type of variable). The intention defines all possible extensions. It has two parts: 

Naming structure: relation name plus name of attributes 
Integrity constraints: 

Key constraints: primary keys, alternate keys 
Referential constraints: foreign keys 

A recent addition to the concept of a relational database is that of a distributed 
database where components are on different computers in the same location or at any 
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location. With the advent of the Internet and improved data communications, this type 
of database will undoubtedly become more common. A recent application is outlined 
in Marrs et al. (1993). 

10.3.2 Query Languages 

Databases present an efficient means for data organization as well as for data re-
trieval. Data retrieval is accomplished through the use of a query language. In general, 
each database package (INGRES, Access, etc.) has its own query language. An exam-
ple of a query is: "Find the names of all physicians and a list of their patients who spent 
more than 5 days in the hospital after 9/1/96." Note that this query must use all three 
relations in our example. The result is: 

Physicians Patients 
W. Holly J. Smith 
A. Wall S. Jones, G. Street 

Query operations are governed by relational algebra, which allows the develop-
ment of nonprocedural high-level query languages. One common query language, 
Structured Query Language (SQL), is used in a number of database programs, includ-
ing Microsoft Access. A query language allows the user to retrieve stored information 
based on logical constructs. SQL contains commands such as the following: 

SELECT . . . FROM 

A use of SQL for the above example is 

SELECT PtNam e FROM Ptinf o WHERE DateAdmitte d >  9/1/96 . 

This query selects all patients admitted after 9/1/96 from the patient information table. 
The WHERE can contain any combinations of ANDs, ORs, and NOTs. 

Other commands include COUNT (number of values), SUM (sum of values), 
AVERAGE, MAX, and MIN. 

10.3.3 Object-Oriented Databases 

Relational databases offer an approach for efficient organization and retrieval 
of data. However, this approach does not use semantic information of the type we 
saw in production rules and frames. By semantic information we mean knowledge 
about the domain being modeled. In short, databases contain large bodies of data and 
little knowledge, whereas expert systems contain large knowledge bases and small 
amounts of data (Barsalou, 1988). Object-oriented databases attempt to combine 
the two. 

The object-oriented approach has the following advantages (Barsalou, 1988; 
Stefik and Bobrow, 1986; Wiederhold, 1986): 

1. The paradigm supports the distinction between conceptual entities and in-
stances of those entities. After retrieval, links to related information are main-
tained. 

2. Objects combine the properties of procedures and data. The current state is 
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captured through the instances, and behavior is represented by the entity's 
methods that are triggered by message sending. 

3. Class hierarchies allow the inheritance of properties from general classes to 
more specific entities, as we saw in the frame paradigm. 

The object-oriented approach is accomplished by including a structure such as a frame 
as an entity in the database along with the relations we saw above (if a relational struc-
ture is used). Information for filling frames can be generated by collapsing information 
from multiple tables from several relationships. Frames can also be included in hierar-
chically structured databases. ONCOCIN (Kahn et al., 1985) uses an object-oriented 
database, which includes temporal components, a subject discussed later in this 
chapter. 

10.4 PREDICATE CALCULUS AND SEMANTIC NETS 

Predicate calculus is a formal approach for translating statements in natural language 
into mathematical representations for the purpose of automated logical reasoning. A 
complete treatment of predicate calculus can be found in Nilsson (1971). 

10.4.1 Syntax 

The syntax is composed of an alphabet of symbols and definitions of expressions 
that can be constructed from the symbols. 

Alphabet 
Punctuation marks:, ( ) 
Logical symbols: ~ (NOT), => (IMPLIES), Λ (AND), v (OR) 
n-adic functions: f" 
/j°are constants also denoted: a, b, c,. . . 
n-adic predicates: p" 

Expressions 
Terms 

Each constant is a term. 
Functions of terms are terms. 

Atomic functions 
Propositions are atomic formulas. 
Propositions of atomic terms are atomic formulas. 

Well-formed formulas (wffs) 
An atomic formula is a wff. 

Negation of a wff is a wff. 

The value of a wff has a value of true (T) or false (F). Its value is determined re-
cursively from its component parts. Quantifiers can be defined to simplify statements. 
The two basic quantifiers are the universal quantifier V and the existential quantifier 
Ξ. Statements are put into clause form through a series of manipulations that produce 
statements which contain only predicates along with the operations Λ and v, with the 
understanding that all variables are universally quantified. 
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10.4.2 Method of Proof 

The idea behind showing that some wff W is a logical consequence of a given set 
of wffs 5 is a demonstration that W follows from S, which is the same as showing that 
no interpretation satisfies the union of S and ~W. Therefore, the approach is to show 
that S u ~ W is unsatisfiable. The method by which we proceed is through the use of a 
semantic tree. 

10.4.3 Semantic Trees 

A semantic tree is a binary tree in which a branch to the left represents a value 
of T and a branch to the right represents a value of F. The complete tree contains all 
possible paths that may satisfy a set of clauses. The objective is to show that there is no 
path that will satisfy the set. Along a certain path, it is possible to determine that the 
path cannot satisfy the clauses without proceeding further. The node in the tree at 
which this occurs is called a failure node, and the tree can be terminated at that point. 

To clarify this procedure, consider the following example of unsatisfiable clauses 
due to Nilsson (1971): 

P(x) v Qiy) 
~P(a) 

~Q(b) 

Figure 10.8 shows the semantic tree with failure nodes for this example. Following the 
tree to the left, the value of F for P(a) does not satisfy the set of clauses, so this node 
becomes a failure node. Verification of the other failure nodes is left as an exercise. 

10.4.4 Semantic Interpretation 

Now can the above be used to reason in the biomedical domain? Consider the 
following example. If we have the rule 

IF Blood Pressure < 100/60 THEN Shock is present 

Symbolically, this can be written 
Ρ(χ) => Qiy) 

where P(x) is the function (x < 100/60), x represents blood pressure, and Qiy) is the 
function (shock) where v assumes the value 0 (false) or 1 (true). 
If we then have the data 

BP = 80/40 
We have an instance P(a) where a = 80/40. 
We then must put this information into clause form. 

P(x) => Qiy) can be written as ~P(x) v Qiy) so our set of clauses is 
~P(x) v Qiy) 
Pia) 

10.4.5 Applications 

It is possible to use predicate calculus and deductive reasoning for biomedical 
systems that are relatively well-defined. One example is to expand SNOMED III (Sys-
tematized Nomenclature of Medicine) for representation of coding schemes to include 
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Figure 10.8 Semantic Tree with Failure Nodes. 

conceptual-graph formalisms which will permit the codes to be used in relational data 
models or in other formal systems such as first-order predicate calculus (Campbell and 
Musen, 1992). A second application involves mapping for digestions by restriction en-
zymes to find solution sets. The approach uses predicate calculus as well as constraint 
methods of solution (Dix and Yee, 1994). 

10.5 TEMPORAL DATA REPRESENTATIONS 

10.5.1 Knowledge-Based Systems 

In production systems, time-dependent diagnostic possibilities are included in the 
standard production rule format. For example, in the EMERGE system (Hudson and 
Cohen, 1988), there are a number of rules such as 

IF SC33(1,2) 
SC34(2,2) 
Dependent rales 
Not (proved old) 

THEN Admit 
where 

SC33(1,2) OR 
Pain diffuse and precordial 
Dyspnea 

SC34(2,2) AND 
> 45 years old 
Symptoms > 20 minutes 

This rule specifies a definite time period for the persistence of symptoms. It also refers 
to patient history with the statement "proved old," which indicates an indefinite time 
frame for a previous occurrence of the event. 
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There are also references with an indefinite time duration: 

IF Atrial fibrillation 
BP < 100/60 
SQ 
Continuing chest pain 
Heart rate > 120 

THEN Admit 

where S Q is defined in Section 10.1. The duration for continuing chest pain is unclear. 
In the knowledge-based system approach, the person interacting with the system 

must deal with temporal variables by finding the information. Thus temporal variables 
do not become a problem of data representation. This is not the case in data-based sys-
tems such as neural networks, which require temporal information to be recorded in 
the data in a usable format. 

10.5.2 Data-Based Systems 

The time-oriented data model (Wiederhold, 1975) discussed earlier has been 
used as the foundation for many databases. Information is stored as < attribute, time, 
value > tuples. Laboratory data, physical findings, and therapeutic interventions can all 
be represented as these temporal points. The major focus is to record the time of these 
point events. However, diagnosis often depends on more complex trends that cannot 
be adequately represented in this manner. A taxonomy of temporal classes was devel-
oped in Cousins, Kahn, and Frisse, 1989 which comprised simple events, complex 
events, and intervals. Simple events are analogous to the < attribute, time, value > tu-
ple. Complex events represent point events that contain an interval of uncertainty. 
Events with no significant temporal duration are called atomic events. Point events are 
atomic and may occur before, during, or after other points. Intervals contain both 
points and subintervals. Figure 10.9 shows these types of events in the chest pain rule 
base. 

10.6 SUMMARY 

The choice of knowledge representation is dependent on the type of information that 
is available as well as on the reasoning methodology. Using production rules as the ba-
sis for representation requires that appropriate knowledge also be available regarding 
the reasoning process. The use of predicate calculus and semantic nets requires that the 
problem be well-defined. Database representations, on the other hand, provide an ef-
ficient means of storing and retrieving data without including any higher-order rea-
soning. The frame and object-oriented approaches are partial compromises between 
the knowledge-based production rule approach and the database approach. 

EXERCISES 

1. In standard production rule systems, rules are in conjunctive form. What does this 
mean? Give an example from an application of your choice. If you were making a de-
cision regarding the subject that you chose for your example, would you reason in this 
way? If not, what reasoning process would you use? 

2. In the EMERGE system, in addition to conjunctions, disjunctions are allowed. Add a 
rule to your application from exercise 1 that is in disjunctive form. If both types of 
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rules are used, will the rule base contain more or fewer rules? Can you rewrite your 
rule using one or more rules in conjunctive form? 

3. What happens to the AND/OR tree illustrated in Figure 10.1 if you allow disjunctive 
production rules? Draw an example. 

4. What is the role of the certainty factor in the MYCIN system? The certainty factor in-
dicates the degree of certainty in what part of the reasoning process? Is the same true 
in the EMERGE system? 

5. For computation of the certainty factor in the EMERGE system, what would be the 
certainty factor for a patient with the following findings: atrial fibrillation, no shock, 
atrial fibrillation not resolved on the second ECG, previous history of atrial fibrilla-
tion. What if there is no information regarding previous history? (Refer to Figures 
10.2 and 10.3.) 

6. List three advantages of production rules. 
7. What does the property of inheritance mean in regards to frame-based knowledge? 

Does the frame structure facilitate the development of reasoning processes? Why or 
why not? 

8. For the following, illustrate the structure for a hierarchical database and for a 
relational database: medical image database that includes digital radiographs, MRI, 
CT, ultrasound, and SPECT images for patients from three hospitals. Informa-
tion also includes referring physician, radiologist who reads the scan, demographics 
and history information for the patients, and contact information for the referring 
physician. 

9. Explain the common thread between frames and object-oriented databases. Can you 
restructure the database from exercise 8 as an object-oriented database? 

10. Explain the reason for the failure nodes in Figure 10.8. 
11. List as many different ways that you can think of in which temporal information is 

used in the medical record. 
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Knowledge Acquisition 

11.1 INTRODUCTION 

The knowledge-based expert system is based on the premise that the inference engine 
and the knowledge base are separate entities, which allows the same inference engine 
to be used for multiple applications. One of the major problems associated with the 
knowledge-based system is the development of the knowledge base itself. The name it-
self comes from the fact that expert input is used in the knowledge base. In early sys-
tems, a person called a knowledge engineer solicited input directly from domain ex-
perts. This procedure has evolved to include derivation from examples and from 
databases. These approaches are discussed in the following sections. 

11.2 EXPERT INPUT 

11.2.1 Acquisition for a New System 

11.2.1.1 Use of Existing Material. In early work on the EMERGE system 
(described in detail in Chapter 18), the knowledge base was in terms of rules whose an-
tecedents could be one of three forms: conjunctions, disjunctions, and confirmation of 
a specified number in a list (i.e., three out of five). The original knowledge base was de-
rived from flowcharts called criteria maps, which had been developed over a number 
of years with the goal of evaluating the appropriateness of treatment in the emergency 
room (Greenfield et al., 1977). A portion of the criteria map for chest pain is shown in 
Figure 11.1. If the answer to a question is yes, the flow goes to the right; otherwise it 
proceeds down to the next box. This format is ideal for establishing rules in the speci-
fied three formats (Hudson and Estrin, 1984). Three rules that correspond to the boxes 
numbered 1,2, and 3 are: 
Rulel 

IF ALL OF 
ANY OF 

Pain diffuse and precordial 
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*i 

Pain diffuse & precordial 
Dyspnea 

*2 
Sweating 
Dizziness 
Nausea 

" 

Dependent Rales 

1 

either ^ 
yes 

any 2 

yes 

> 45 yrs old 
S„ > 20 min 

Associated with onset 

Proved old 

' 

Rales > 50% of chest 

*3 ' 

Bronchospasm 
Shortness of Breath 

i r 

both 
yes 

V 

Admit 

Clearly new or increased 

both 
yes 

Admit 

Admit 

Admit 

Figure 11.1 Portion of Criteria Map for Chest Pain. 

Dyspnea 
>45 years old 
Symptoms > 20 minutes 

THEN Patient should be admitted 
Rule 2 

IF ALL OF 
ANY 2 OF 

Sweating 
Nausea 
Dizziness 

Associated with onset 
THEN Patient should be admitted 

Rule 3 
IF ALL OF 

Bronchospasm 
Shortness of breath 
Clearly new or increased 

THEN Patient should be admitted 

Figure 11.2 illustrates the process for rule base development in the EMERGE system. 
Often, written sources can be found which can be used as a basis for establishing the 
rule base, which can then be completed through expert input. 
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Expert 
Input 

Criteria Maps 

EMERGE 

Evaluation 

Rule 
Modification 

Figure 1L2 Knowledge Base Development in EMERGE. 

11.2.1.2 Techniques for Knowledge Elicitation. The idea of eliciting infor-
mation from experts is not as straightforward as it sounds. First, the person collecting 
the information, sometimes called the knowledge engineer, must know the type of in-
formation that is required. In other words, one cannot go to a cardiologist and say: "Tell 
me about coronary artery disease." The questioning must be focused. A better initial 
approach is, "How do you make decisions regarding the presence of coronary artery 
disease?" Usually more specific questioning is needed. For a particular condition, 
symptoms may be sought. The knowledge engineer must be careful, however. If he or 
she asks questions in a prespecified format, the expert will fit his answers into this for-
mat and may exclude some of the actual decision-making process. 

An anecdote may help to illustrate this point. After the EMERGE system had 
been in operation for some time, it was decided to include techniques for approximate 
reasoning (Hudson and Cohen, 1988). In particular, instead of the three binary logic 
constructions that had been used, the antecedents were to be weighted according to 
relative degree of importance, and instead of entering a yes/no in response to presence 
of symptoms, a degree of presence was to be indicated. Reluctantly, we approached the 
cardiologist with this idea, assuming that he would not be eager to have to enter a de-
gree of presence. We were surprised to learn that the medical residents were in fact 
trained to record a value between 1 and 10 in order to indicate the degree of severity 
of chest pain. He had never mentioned this because he responded to our conception of 
the knowledge structure as being binary. This illustrates the importance of not con-
straining questioning to a presupposed structure that excludes information actually 
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used in the human decision process. There is a fine line between guiding the expert's 
response into a format that can be built into the automated system and altering the ex-
pert process so that it will fit. Complete communication between a knowledge engineer 
and a domain expert is very difficult if there is no overlap of knowledge between 
the two. 

Another inherent problem is whether or not we actually know how we make de-
cisions. When pressed on this point, most people will come up with a description, but it 
may not represent the actual process. Figure 11.3 illustrates the process for expert elic-
itation of knowledge. 

11.2.1.3 Dealing with Multiple Experts. Problems can arise when multiple 
experts are contacted. Although most experts agree on general points, there may be 
specific serious disagreements. Potential problems include: 

Different conditions for diagnosis 
Different treatment strategies 
Contradictory rules 

Expert 1 

Expert 2 

Expert n 

Decision-
Making 
Algorithm 

Rule 
Modification 

Figure 11.3 Acquiring Expert Information. 
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If more than two experts are used, consensus building can be employed to remove in-
consistencies. 

11.2.1.4 Consistency. For a knowledge-based system to function properly, the 
knowledge base must be consistent. This requirement seems obvious, and on the sur-
face it appears that the creation of a consistent knowledge base is straightforward. 
However, a number of complications can arise: 

In large knowledge bases, it becomes difficult to determine if contradictory in-
formation is included. 
Due to rule chaining, combinations of some sequences may reach conclusions 
that are inconsistent with other sequences. 

The second of these is very difficult to detect. The sequence of rule generation is de-
pendent both on the case data and the searching strategy. With complex knowledge 
bases, the number of possible sequences grows exponentially, making complete de-
bugging difficult, if not impossible. Searching strategies are treated in more detail in 
Chapter 12. 

11.2.1.5 Completeness. A major proviso of expert systems is that they func-
tion properly only in the domain for which they are designed. Thus, if a patient presents 
to the emergency room complaining of chest pain, a program such as EMERGE that 
is designed to evaluate different types of chest pain can perform well on most cases but 
would miss a diagnosis of mental illness that may have led to perceived chest pain. De-
termining the boundaries in which an expert system is competent is not always 
straightforward. However, every effort must be made to adequately cover the area for 
which the program claims competence. 

11.2.2 Updating of Information 

Expert systems in biomedicine must be continually updated as knowledge in the 
field changes and expands. This process is usually done in connection with domain ex-
perts to determine which new information is worthy of inclusion. Evaluation of litera-
ture is not always easy, for many studies produce conflicting results. The new field of 
evidence-based medicine (Sackett et al., 1997) has much to contribute to both the de-
velopment and update of expert system knowledge bases. 

In updating a knowledge base, the method of eliciting knowledge remains im-
portant. Consider the following example from Teiresias (Davis, 1982). Rather than ask-
ing the expert "What should I know about bacteremia?" it is much better to phrase the 
question in the following format: 

Here is a case history for which you claim the performance program incorrectly deduced 
the presence of pseudomonas. Here is how it reached its conclusions, and here are all the 
facts of the case. Now, what is it that you know that the performance program doesn't, 
which allows you to avoid making that mistake? 

This type of questioned focusing is likely to elicit much more information. 
The Teiresias system was designed to aid in the task of knowledge base develop-

ment (Davis and Buchanan, 1977). The human expert communicates via Teiresias with 
the performance program, which in this case is MYCIN (Shortliffe, 1976). The expert 
must state advice in terms that the system understands and must evaluate the system's 
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performance and assign credit or blame to individual rules. The system also provides a 
means for including strategic information for problem solving in terms of meta-rules, 
a subject discussed in Section 11.4. 

11.3 LEARNED KNOWLEDGE 

Because of the problems illustrated in the preceding sections, many researchers have 
sought alternatives to expert input. One common approach is learning through exam-
ples. In Part I of this book we have focused on learning in the context of neural net-
works and pattern classification. In Cohen and Feigenbaum (1982) the history of learn-
ing in artificial intelligence research is summarized. The learning techniques we have 
seen so far are one aspect of this research. In the following, we provide summaries of 
the other approaches. The three types of learning to be discussed, as outlined in Cohen 
and Feigenbaum (1982), are rote learning, learning by being told (advice-taking), and 
learning from examples (induction). 

11.3.1 Rote Learning 

Rote learning is simply storing information that has been told to the system. 
Early game-playing programs, such as Samuel's (1959) checkers program, are exam-
ples of rote learning. Traditional expert-supplied rules that comprise domain-specific 
knowledge bases are also a form of rote learning. Much of human learning is also of 
the rote fashion. It can be argued that a certain amount of rote learning must occur be-
fore higher levels of learning are possible. Rote learning systems require knowledge 
organization and searching strategies (a topic to be discussed in Chapter 12). 

11.3.2 Learning by Being Told 

How does advice-taking differ from rote learning? In a computer system, high-
level information must be processed and represented in a suitable form. This process 
is called operationalization. The process involves such activities as deducing the conse-
quences of actions, filling in details, and asking for more advice. EMYCIN (Davis and 
Buchanan, 1976), an offshoot of the MYCIN system (Shortliffe, 1976), was designed to 
help develop new knowledge bases. The system assisted a domain expert in carrying 
out the five steps summarized in Hayes-Roth, Klahr, and Mostow (1980): request, in-
terpret, operationalize, integrate, and evaluate. 

11.3.3 Learning from Examples 

11.3.3.1 Pattern Classification and Neural NetworL·. The supervised and 
unsupervised learning techniques discussed in Section 11.1 rely on learning from ex-
amples. For these algorithms, the examples are in numeric format. In artificial intelli-
gence systems, the emphasis is usually on nonnumeric examples. 

11.3.3.2 Learning Single Concepts. One example given by Winston (1977) is 
the learning of the concept of an arch through use of semantic nets (discussed in Chap-
ter 10). The program is presented with examples of arches as well as near misses. These 
are illustrated in Figure 11.4. The idea is for the computer to learn that an arch consists 
of two standing blocks that support a third block lying on its side. The first challenge is 
the knowledge representation. The method Winston chose is networks of linked con-
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Samples Data Structures 

Is supported by 
Example of an Arch 

Not an Arch 

Figure 11.4 Learning a Simple Concept. 

cepts. The initial example is represented by the network adjacent to it in Figure 11.4. 
Winston's learning algorithm is the following: 

Initialize: 
Concept description corresponds to the first positive example. 

Repeat until all examples have been examined: 
Convert the next example into a semantic network description. 
Match the current example with the concept description. 

Annotate the graph indicating nodes and links that do not match. 
Use the annotated skeleton to modify the concept description. 

If the current example is a: 

Positive instance, modify the concept description. 
Negative instance, add a necessary condition to the concept description. 

This example points out two important ideas in using nonnumeric data: proper repre-
sentation and concept formation. In the next section, we will discuss concept formation 
in a more complex problem. 

11.3.3.3 Learning Multiple Concepts. As mentioned in Chapter 9, DEN-
DRAL (Buchanan, Sutherland, and Feigenbaum, 1969) was one of the first rule-based 
systems. Its focus was chemical synthesis. An outgrowth of this system, Meta-DEN-
DRAL (Buchanan and Mitchell, 1978), discovers rules about the operation of a mass 
spectrometer, an instrument that produces a spectrum which is a histogram of the 
number of fragments (intensity) plotted against their mass-to-charge ratio. A sample 
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spectrogram is shown in Figure 11.5.The molecular structure of a compound can be de-
termined through analysis of the spectrum. Heuristic DENDRAL was designed to ac-
complish this analysis automatically and produce a set of cleavage rules for each pos-
sible structure. The simulated spectra are compared to the actual spectrum to 
determine the most likely structure of the unknown sample. Meta-DENDRAL is the 
learning segment of Heuristic DENDRAL. Its role is to discover cleavage rules for a 
structural family. In order to solve this problem, the following are given (Cohen and 
Feigenbaum, 1982): 

A representation language for describing molecular structure. 
A training set of known molecules for a given structural family, comprising their 
structures and mass spectra. 

The objective is to find the cleavage rules. 
The representation language corresponds to ball and stick molecular models, a 

diagram of which is shown in Figure 11.6a. These models are represented by an undi-
rected graph shown in Figure 11.6b in which nodes represent molecules and edges rep-
resent bonds. Hydrogen atoms are excluded. Each atom has four features: 

1. Atom type 
2. Number of nonhydrogen neighbors 
3. Number of hydrogen atoms bonded to the atom 
4. Number of double bonds 

The bond environment makes up the left-hand portion of the rule. The action portion 
of the rule specifies that the designated bond will cleave in the mass spectrometer. The 
left-hand side is matched with the structure that is undergoing electron bombardment 
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Figure 11.5 Sample Mass Spectrogram. 
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(a) Stick Model of Molecule, 2,6-Dimethyllieptane 

Figure 11.6 Molecular Knowledge Repre-
sentation. (b) Undirected Graph Representation 

in the mass spectrometer. If the left-hand side is matched, the right-hand side indicates 
that the bond designated with an asterisk will break. 

The training instances must be converted into specific points in the rule space. 
The program must hypothesize which bonds were broken in order to produce the 
given spectrum. In order to do this, it uses the half-order theory of mass spectrometry 
in which one fragmentation slices the molecule into two pieces, then one of these 
pieces is again split, and so forth. A number of specific rules are used in this process 
(Cohen and Feigenbaum, 1982). The process results in a simulated spectrum that is 
compared to the observed spectrum. If these match, a causal relationship is inferred. 
The search strategies of Meta-DENDRAL will be discussed in Chapter 12. 

11.4 META-KNOWLEDGE 

Meta-knowledge is a higher level knowledge than domain knowledge. It is the knowl-
edge that the system has regarding the handling of the domain knowledge. Most expert 
systems utilize some form of meta-knowledge, which can be defined as knowledge 
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about the objects or data representations. For example, a central theme of Teiresias is 
exploration of the use of meta-knowledge. In short, meta-knowledge is the represen-
tation in the program of knowledge about the program itself, including how much it 
knows and how it reasons. It uses the same knowledge representation format as the do-
main knowledge. Thus the domain knowledge contains object-level representations 
that describe the outside world with which the program deals, and the meta-level 
knowledge that describes the internal world of the program, which can be considered 
its self-knowledge. Comparison of these two types of knowledge can be seen in a meta-
rule and an object level rule from MYCIN (Barr and Feigenbaum, 1982): 

Meta-Rule 001 
IF 1) The infection is a pelvic-abscess, and 

2) There are rules that mention in their premise Enterobacteriaceae, and 
3) There are rules that mention in their premise gram positive rods, 

THEN There is suggestive evidence (0.4) that rules dealing with Enterobacteriaceae should be 
evoked before those dealing with gram positive rods. 

MYCIN Rule 095 
IF The site of the culture is blood and 

The gram stain is positive and 
The portal of entry is gastrointestinal tract and 
[A-the abdomen is the locus of infection or 
B-the pelvis is the locus of infection] 

Then There is strongly suggestive evidence that 
Enterobacteriaceae is the class of organisms for which therapy should cover. 

The rule-searching scheme for MYCIN is discussed in Chapter 12. 

11.5 KNOWLEDGE BASE MAINTENANCE 

Knowledge base maintenance is as important as the initial establishment of the knowl-
edge base, especially in fields where knowledge is rapidly expanding. Some of the same 
issues that were discussed in knowledge base development apply here. 

11.5.1 Assuring Accuracy 

Unlike neural network and pattern classification algorithms that are based on 
data, knowledge-based systems are based on rules, frames, or other structures that rep-
resent expert input. Verifying the accuracy of knowledge bases, as opposed to data-
bases, raises a different set of issues. These issues are addressed in detail in Chapter 13. 

11.5.1.1 Permission to Change Knowledge Base. The Teiresias system allows 
experts to review and modify the domain knowledge base. The ability to do so raises 
questions about who is allowed to perform modifications. In general, the expert system 
user is not permitted to alter the database even if he or she disagrees with it. Every 
time the knowledge base is changed, the process of evaluation must be repeated. 

11.5.1.2 Verifying Sources of Information. When using expert sources of in-
put, much of the information relies on the expertise of the expert. Usually, expert sys-
tems are based on the opinions of multiple experts and hence are in a sense self-regu-
lating. However, care must be taken in the selection of experts. In many fields, different 
subgroups exist who view the domain differently. If all experts are chosen from the 
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same subgroup, then the knowledge-based system will incorporate the bias of the sub-
group. Sometimes this is the intention of the system, but it is important for the user to 
be aware of potential limitations. 

11.5.2 Maintaining Consistency 

As new rules are added, maintaining consistency among the rules becomes a 
problem. When a new rule is added, its consistency must be checked with the entire 
knowledge base. For systems with hundreds of rules, this can become a formidable 
task. 

Chapter 13 addresses these issues in more detail along with some practical meth-
ods for handling them. 

11.6 SUMMARY 

Knowledge acquisition in knowledge-based systems remains a challenge. It requires 
communication between the system developer and the domain expert, and it is often 
hindered by lack of common knowledge between the two. Other complications arise 
when two or more domain experts disagree. In addition to knowledge elicitation, other 
techniques for knowledge base development include the use of learning techniques. 
These may be used alone or in conjunction with expert input. 

EXERCISES 

1. Using the criteria map in Figure 11.1, derive two additional rules. 
2. Assume that you wish to expand on the information shown in the criteria map. Devise 

three questions you would ask a domain expert that could lead to information to be in-
cluded in the rule base. 

3. What is the major difference between learning in knowledge-based systems and neural 
network learning? Is there any possibility for combining the two? Explain. 

4. What do the arches learning problem and Meta-DENDRAL have in common? 
5. Knowledge representation is a key component in knowledge-based systems. How does 

knowledge representation affect the reasoning process? How does the reasoning 
process affect knowledge representation? 

6. Explain in your own words the meaning of meta-knowledge. Are alternatives available 
to using meta-knowledge in the reasoning process of knowledge-based systems? Is 
meta-knowledge completely separate from domain knowledge? Explain. 
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Reasoning Methodologies 

12.1 INTRODUCTION 

This chapter provides an overview of the reasoning methodologies utilized in knowl-
edge-based systems. The most straightforward of these methods is exhaustive search, 
one of the early techniques of artificial intelligence. Other methods include directed 
search, rule base searching, inference engines, and automated deduction. In the next 
section, representation methods are discussed, followed by outlines of different rea-
soning strategies. 

12.2 PROBLEM REPRESENTATIONS 

Searching was a major component of early research in artificial intelligence and re-
mains an important technique in the implementation of systems that require the intel-
ligent retrieval and analysis of information. There are a number of good textbooks out-
lining searching methodology, including Nilsson (1971), Barr and Feigenbaum (1981), 
and Davis (1982). 

12.2.1 Graphs and Trees 

The most general data structure in terms of searching algorithms is the graph. 

Definition 12.1 

A directed graph G is a set E of edges, a set V of vertices or nodes, and functions 

80:E->V and δι: E -> V 

that denote source and target, respectively. G is finite if both V and E are finite sets. The follow-
ing notation is used: 

n —» n or e: n —» n 

where e is an edge that connects node n to «'.This connection can be represented by either of 
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these forms. In addition, two functions can be defined, δ0 and 8V These functions define the 
process of moving from n to ri and ri ton, respectively: 

60e = n 

8^ = ri 

EXAMPLE 12.1 

V = {a, b, c,d}E = {(a, b), (a, c), (b, d), (c, d)} 

The corresponding graph is 
a —► b 

I I 

EXAMPLE 12.2 

V = {a, b, c,d}E = {1,2,3,4,5} where 

1 2 3 4 5 

The corresponding graph is: 

δο 
δι 

ti is: 

a 
b 

a a b 
b e d 

a Z b 

c — k . d 

c 
d 

Definition 12.2 

Let e, e' be edges. Then e' follows e iff 60e' = 6xe. A path p in G is a list eu . . .,en of edges 
such that e, follows e,-_i.The source of p = e l 5 . . . ,e„ is δ0«ι = δορ, and the target is δ^« = 8ιρ. 
The path from n to n' is represented by 

P , 
n—*n 

Node n' is said to be reachable from n iff there is a path n —> n'. A eyefe in G is a path with 
δβρ = δι/7. A graph is acyclic iff it has no cycles. 

Definition 12.3 

A root is a node r such that all nodes are reachable from r. A rooted graph is a graph with 
a root. A tree is a rooted graph with a root r such that for all nodes n there is exactly one path 
r^tn.A forest is a graph G with a set {/·], . . . , rk} c G such that for each node n ε G there is 
exactly one r, and one path p{. rt —» n in G. The r/s are semiroots. Any forest is a disjoint union 
of trees. 

EXAMPLE 12.3 
a 

b e d 

/ \ I 
e f g 

Tree 

b c j 

/ \ /l\ /i\ 
a e f g h k I m 

Forest (Graph) 
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Definition 12.4 
The unfoldment Ur(G) is denned by 

i. Its nodes are paths,p:r—> n in G 
ii. Its edges are pairs (p, pe) such that p, pe are nodes in t/r(g); that is,/», pe are paths from r in 

G, e is an edge in G. δ0(ρ, pe) = p, δα(ρ, pe) = pe. 

EXAMPLE 12.4 

3| |2 
^ 3 ' \ 

34 12 

EXAMPLE 12.5 

a -b / i 

3 2 4 3 1 2 

<-Td / I \ 
35 14 24 

EXAMPLE 12.6 
1 ( / \ 

a < fc | 
2 1 

21 

i 
12 

Note that this is an infinite graph! 

12.2.2 Binary Trees 

One of the most important searching structures is the binary tree. 

Definition 12.5 
A binary tree B is a set V of vertices or nodes, an element r called the root, and two func-

tions σ0 and σι, called the left and right successors, respectively, such that 
i. σ,(Λ) = Λ for i = 0,1, . . ., where Λ indicates a null node 

ii. For each node v eV, there is a unique list p e (σ0, σχ] of successors such that p(r) = v 
where forp = σ,σ,. . . ato i,j, . . ., ke {0,1} we define p(r) = σ,(σ,(. . . ak(r))). 

EXAMPLE 12.7 
a 
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V = {a, b, c, d) 
σ0(α) = b 
σ0(ί>) = d 

σι(α) = c 

σι(6) = Λ 

If the word "unique" is omitted from the definition, the result is a binary graph rather than a bi-
nary tree. 

It is important to note that any finite ordered directed forest can be represented by a bi-
nary tree B by using the following: 

σ0(ν) = first offspring of v, else Λ. 
σ^ν) = next sibling of v, else Λ 

This is a one-to-one, onto mapping. 

EXAMPLE 12.8 
a 

b c 

A I 
e f g 

b 
/ \ e c 

f 8 d 

EXAMPLE 12.9 
a 

b 
Λ 

e f e c i 

f g d j 
\ 

k 
/ 

I 

12.2.3 State-Space Representations 

For many problems, it is useful to make definitions in terms of states and opera-
tors that transform one state to another. Almost any type of data structure can be used 
to represent states. A state space can be considered a directed graph in which the op-
erators transform one state to another. The set of attainable states is called the state 
space, which may be very large or even infinite. Consider as an example the 8-puzzle 
in which the goal is to move tiles around to achieve the configuration (Nilsson, 1971): 

1 2 3 

8 ■ 4 

7 6 5 

Possible operators for this problem are, UP, DOWN, LEFT, RIGHT, which refer to the 
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direction in which the blank moves. Not all of these operators will be applicable to 
every state. For the initial state 

7 

1 

8 

9 

2 

5 

■ 

3 

4 

only LEFT and DOWN are applicable. We will see a graph representation of this puz-
zle later in this chapter. 

12.2.4 Problem Reduction Representations 

The purpose of a problem reduction representation is to take a general problem 
and break it into subproblems. A problem representation is defined by the following: 

1. An initial problem description 
2. A set of operators that transform the initial problem into subproblems 
3. A set of primitive problem descriptions 

Reasoning proceeds backwards until the initial goal is reached. 
A general method for problem representation is the AND/OR graph (Nilsson, 

1971).The start node corresponds to the original problem. Each node represents either 
a single problem or a set of problems to be solved. A node that represents a primitive 
problem is a terminal node. An arc indicates an AND node. All others are OR nodes. 
As an example, consider the following integration problem that is broken into sub-
problems using integration by parts. 

EXAMPLE 12.10: AND/OR Graph for J{x cosx + x5)dx 

The boxes with the heavy border are terminal nodes. The dark arrows indicate the so-
lution path. Methods for searching AND/OR graphs are discussed in Section 12.7.3. 
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12.2.5 Game Trees 

Game trees are similar to state-space representations, with the important excep-
tion that moves (or operators) are performed by two opposing players. Terminal states 
represent win, lose, or draw. An AND/OR tree can be used to represent the game from 
one player's perspective in which his or her moves are represented by OR nodes and 
the opponent's moves by AND nodes. 

12.3 BLIND SEARCHING 

The first categories of searching algorithms that we examine are blind or exhaustive 
search techniques. The basic idea is to examine nodes in a graph or tree until a goal 
node is found. The process represents a search for specific information that is specified 
by the problem. The methods differ in the order in which the nodes are visited. For the 
following techniques, we will utilize the tree in Figure 12.1 for illustrative purposes. 

12.3.1 Depth-First Search 

The basic idea of the depth-first search is to find a path to a goal node by start-
ing at the top node and proceeding down levels to the bottom. In depth-first algo-
rithms, a depth bound is generally used, as some trees may have very large or infinite 
depth. This bound limits the possibility of pursuing a fruitless path for an extended pe-
riod. Care must be taken, however, in establishing this bound, for premature trunca-
tion of search may result in loss of solutions. The algorithm is 

1. Put start node on OPEN list. 
2. If OPEN is empty, exit with failure; otherwise continue. 
3. Remove the first node n from OPEN and put it on a list called CLOSED. 
4. If the depth ofn equals the depth bound, go to 2; otherwise continue. 
5. Expand node n, generating all successors ofn. Put the successors (in arbitrary 

order) at the beginning of OPEN and provide pointers back to n. 

Figure 12.1 Example of a Search Tree. 
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6. If any of the successors are goal nodes, exit with the solution obtained by trac-
ing back through the pointers; otherwise go to 2. 

EXAMPLE 12.11 

Iteration 1: 
Iteration 2: 
Iteration 3: 
Iteration 4: 
Iteration 5: 
Iteration 6: 
Iteration 7: 

OPEN 
S 
A,B 

Q D, E, B 

H, D, E,F,G,B 
D,E,B 

I, J, E, B 
J,E 

/ is the goal node, so the search is terminated. 

CLOSED 

5 
S,A 

S,A,C 
S,A,QH 
S,A,B,QH,D 
S,A,B,QH,D,I 

12.3.2 Breadth-First Search 

The breadth-first algorithm scans the width of the tree first rather than the depth: 

1. Put start node on OPEN 
2. If OPEN is empty, exit with failure; otherwise continue. 
3. Remove the first node n from open and put it on closed. 
4. Expand node n, generating all its successors. If there are no successors, go to 2. 

Put all the successors at the end of OPEN, and provide pointers back to node n. 
5. If any of the successors are goal nodes, exit with the solution obtained by trac-

ing back through the pointers; otherwise go to 2. 

EXAMPLE 12.12 
Using Figure 12.1, we find that the breadth-first method generates the following 

steps: 

Iteration 1 
Iteration 2 
Iteration 3 
Iteration 4 
Iteration 5 
Iteration 6 

OPEN 
5 
A,B 

B, Q D, E 
Q D,E,F,G 
D, E,F,G,H 
E, F, G, H, I, J 

CLOSED 

S 
S,A 
S,A,B 
S,A,B,C 
S,A,B, QD 

At this point, the goal node / is on the list of successors, so the search terminates. 

12.4 ORDERED SEARCH 

The above methods relied only on the order of the nodes. The methods in this section 
use additional information to guide the search process. 
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12.4.1 Uniform Cost Method 

A generalization of the breadth-first method is the uniform cost method that is 
guaranteed to find a minimal cost from the start node to a goal node. The breadth-first 
method relies on equal path length, while the uniform cost relies on equal path cost. 
We define c(nb nj) as the cost of going from node i to node ;, and g(n) as the minimal 
cost of going from S to n. The algorithm is: 

1. Put S on OPEN. Let g(S) = 0. 
2. If OPEN is empty, exit with failure; otherwise continue. 
3. Remove from OPEN the node n with the smallest g and put on CLOSED. 
4. Ifn is a goal node, exit with solution; otherwise continue. 
5. Expand n, generating all its successors. If no successors, go to 2. For each suc-

cessor Hi compute 

g(ni) = g(n) + c(n,ni) (12.1) 

Put on OPEN with corresponding pointers. 
6. Go to 2. 

Note that if c{nk, nj) is set equal to the path length, then this is the breadth-first algo-
rithm. If all costs are positive and bounded, it can be shown that this algorithm will pro-
duce the optimal search strategy (Nilsson, 1971). 

12.4.2 Using Heuristic Information 

Frequently, the use of heuristic information can greatly reduce search effort at 
the expense of finding a minimal cost path. In heuristic search, the nodes are reordered 
at every step through the use of an evaluation function that indicates the promise of a 
node. Heuristic information is contained in a function /, where f(n) is the value of this 
function at node n. If g(n) in the uniform cost algorithm is replaced with f(n), the re-
sult is the heuristic search algorithm. The difficult part is the definition of fin). An ex-
ample that is often used for illustrative purposes is the 8-puzzle in which the objective 
is to place all tiles in order. The heuristic for this problem is 

fin) = g(n) + w(n) (12.2) 

where g(n) is the path length and w(n) is the number of misplaced tiles. The idea then 
is to expand the node for which fin) is a minimum. An example is shown in Figure 12.2 
(Nilsson, 1971). Sample computations for each node are: 

Level 0 
Node 1: fin) = 0 + 4 = 4 

Level 1 
Node 2: fin) = 1 + 5 = 6 
Node 3: fin) = 1 + 3 = 4 
Node 4: fin)-1 + 4-5 

Level 2 
Node 5: fin) = 2 + 4 = 6 
Node 6: fin) = 2 + 3 = 5 
Node 7: fin) = 2 + 4 = 6 

► Expand node 3 

► Expand node 6 
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2 

2 
1 
7 

S 

2 
1 
7 

8 
4 
6 

8 
6 

■ 
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■ 

10 
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11 

8 
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- -

■ 
3 
5 

- -

3 
4 
5 

2 
8 
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2 
8 
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■ 
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3 
4 
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3 
4 
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3 
4 
5 

2 
1 
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2 
1 
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7 « 

1 2 
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3 

■ 
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1 
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1 
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1 
6 

■ 
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3 
5 

■ 

3 
4 
5 

Figure 12.2 Ordered Search for Puzzle 8 (based on Nilsson, 1971). 

Level 3 
Node 8: f(n) = 3 + 2 = 5 
Node 9: fin) = 3 + 4 = 7 

Level 4 
Node 10 /(«) = 4 + 1 = 5 

Expand node 8 

Expand node 10 
Level 5 

Node 11 Goal Node 

12.5 AND/OR TREES 

An AND/OR tree is used in general as a problem reduction tool as described earlier. 
A number of strategies are available for searching AND/OR trees. The objective of 
these methods is to find a solution by showing that the goal node (or start node) is 
solved. The tree will consist of solved nodes and unsolvable nodes, defined by the fol-
lowing: 
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Solved Nodes 

1. The terminal nodes (primitive problems) are solved. 
2. A nonterminal node with OR successors is solved if at least one of its succes-

sors is solved. 
3. A nonterminal node with AND successors is solved if all of its successors are 

solved. 

Unsolvable Nodes 

1. Nonterminal nodes with no successors are unsolvable. 
2. A nonterminal node with OR successors is unsolvable if all of its successors 

are unsolvable. 
3. A nonterminal node with AND successors is unsolvable if at least one of its 

successors is unsolvable. 

12.5.1 Breadth-First Search and Depth-First of AND/OR Tree 

The following is the breadth-first searching algorithm for an AND/OR tree: 

1. Put S on OPEN 
2. Remove first node n on OPEN, put it on closed. 
3. Expand n. Put these successors at the end of OPEN, and provide pointers back 

to n. / / there are no successors, label n unsolvable and continue; otherwise go 
to 8. 

4. Apply the unsoh'able-labeling procedure to the search tree. 
5. If the start node is labeled unsolvable, exit with failure; otherwise continue. 
6. Remove from OPEN any nodes having ancestors that are unsolvable. 
7. Go to 2. 
8. If any of the successors are terminal nodes, label them solved and continue; 

otherwise go to 2. 
9. Apply the solve-labeling procedure to the search tree. 

10. If the start node is labeled solved, exit with the solution tree; otherwise con-
tinue. 

11. Remove from OPEN any nodes that are solved or that have ancestors that are 
solved. 

12. Go to 2. 

The only differences in this algorithm for depth-first search is the modification of step 
three to put new nodes on the beginning of the OPEN list and checking the depth 
limit. 

12.5.2 Costs of Solution Trees 

For AND/OR trees one of two cost methods is generally used: 

1. Sum of all arc costs in a tree. 
2. Cost of the maximum path. 
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If unit costs are used, the sum method is the same as the number of nodes, and the max-
imum cost is the longest chain of steps. The cost of the optimal solution g(n) is deter-
mined by the following where c{nb nj) is the cost of going from node i to node / and 
g(rti) is the minimum cost from the root to node «,·. 

1. If n is a terminal node, g(n) = 0 
2. If n is a nonterminal node having OR successors ηλ, . . . , nk g(n) = 

3. If n is a nonterminal node having AND successors, ηχ, . . ., nk 

k 

g(n) = Σ [ Φ > "«·)+ #("«■)] ( s u m c o s t s ) o r 

max[c(«, n,) + g(ni)] (max costs) 

g(n) is undefined for unsolvable nodes. 

12.5.3 Ordered Searching of AND/OR Trees 

Heuristic information, represented by h(n), can be defined as we saw before for 
tree searching. The search process generates an AND/OR tree. At each stage, at the 
bottom of the tree there will be 

1. Nodes that have been discovered to be terminal. 
2. Nodes that have been discovered to be nonterminal but have no successors. 
3. Nodes whose successors have not yet been generated. 

All of these are called tip nodes. 
If n is a tip node 

1. If n is terminal, h(n) = 0. 
2. If n is nonterminal and has no successors, h(ri) is undefined. 
3. If n's successors have not yet been generated, then heuristic information must 

be used. 

If n is a non-tip node, then the same procedure as outlined in steps 2 and 3 of the min-
imum cost algorithm applies. 

The general ordered search algorithm for AND/OR trees is (Nilsson, 1971): 

1. Put S on OPEN and compute h(s). 
2. Compute potential solution tree τ0 using h values of nodes. 
3. Select some tip node n that is on OPEN;put it on CLOSED. 
4. Ifn is a terminal node, label it solved and continue; otherwise go to 9. 
5. Apply solve-labeling procedure to τ0 . 
6. If start node is solved, exit with τ0 as solution tree. 
7. Remove all nodes having ancestors that are solved. 
8. Go to 2. 
9. Generate all successors ofn. If none, label n unsolvable and continue; other-

wise go to 14. 
10. Apply unsolvable labeling procedure to το- If start node is unsolvable, exit with 

failure; otherwise continue. 
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11. Remove from OPEN any nodes having ancestors that are unsolvable. 
12. Go to 2. 
13. Put these successors on OPEN, and compute h values for successors. Re-

compute h for n and its ancestors. 
14. Go to 2. 

12.6 SEARCHING GAME TREES 

Game tree searching requires different searching techniques. Remember that in gen-
eral game trees are represented as AND/OR trees from the point of view of one of the 
players. Two approaches will be discussed: minimax and alpha-beta. 

12.6.1 Minimax 

In the minimax procedure, an evaluation function is used. The evaluation func-
tion will be in favor of player A, so A will choose the maximum value of tip node eval-
uations, while player B will choose the minimum. The procedure works by computing 
backed-up values. As an example of an evaluation function, consider tic tac toe. An 
evaluation function may be (Nilsson, 1971): 

E(p) = (number of complete rows, columns, or diagonals that are still open for X)— 
(number of complete rows, columns, or diagonals that are still open for O). 

If p is a win for A, then E(p) = °°; if p is a win for B, then E(p) = -°°. The strat-
egy depends on the depth used for the backed-up values. In this procedure, the search 
tree is first generated and then evaluated. 

12.6.2 Alpha-Beta 

In the alpha-beta procedure, tip node evaluation and backed-up values are done 
simultaneously with tree generation, resulting in a much more efficient algorithm. It re-
lies on the creation of a provisional backed-up value (PBV). The PBVs of AND nodes 
are called alpha values, and those of OR nodes are called beta values. The PBV of an 
AND node is set equal to the current largest of the final backed-up values of its suc-
cessors. The PBV of an OR node is set equal to the smallest of the final backed-up val-
ues of its successors. Search is discontinued by one of the following rules: 

1. Search can be discontinued below any OR node having a PBVs the PBV of 
any of its AND node ancestors. This OR node can then be assigned a final 
backed-up value equal to its PBV. 

2. Search can be discontinued below an AND node having a PBV value s the 
PBV of any of its OR node ancestors. This AND node can then be assigned a 
final backed-up value equal to its PBV. 

When search is terminated by rule 1, an alpha cutoff has occurred, and, under rule 2, a 
beta cutoff. For more details on this procedure, see Nilsson (1971). 

12.7 SEARCHING GRAPHS 

The preceding algorithms were based on searching trees. There are some additional 
provisions if graphs are to be searched. 
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12.7.1 Breadth-First Graph Searching 

The general algorithm applies to graphs, with the proviso that it is necessary to 
determine if a node is already on OPEN or CLOSED; if it is, do not put it on OPEN 
again. 

12.7.2 Uniform Cost Algorithm 

The uniform cost algorithm requires the following modifications: 

1. If a newly generated successor is already on OPEN, do not add it again. How-
ever, its g value may now be smaller. Use the smallest g value. Direct pointers 
to the cheapest parent. 

2. If a newly generated successor is already on CLOSED, the smallest g value has 
already been found. 

12.7.3 AND/OR Graphs 

For searching of AND/OR graphs, the following complications arise: 

1. Breadth first 
Expand nodes with the least depth first 

Depth of start node is 0. 
Depth of any other node is 1 plus the depth of the shallowest parent. 

2. Pointers can point to more than one parent. 
3. It is necessary to check to see if successors are on CLOSED and previously la-

beled solved or unsolvable. 

12.8 RULE BASE SEARCHING 

In the first part of this chapter, we have discussed knowledge representation at a low 
level. What about higher-level knowledge such as production rules? As it turns out, 
the same methods apply. There are two basic strategies for rule searching, backward-
chaining and forward-chaining, along with numerous variations on the two. 

12.8.1 Backward-Chaining 

If the purpose of a production system is to check out hypotheses, then backward-
chaining is generally used. Backward-chaining can be used to establish only one par-
ticular hypothesis rapidly, or it can be used, as in MYCIN (Shortliffe, 1976), to check 
all hypotheses but in a manner that seems structured in that it tries to establish one hy-
pothesis at a time. Searching the rule base generates the equivalent of an AND/OR 
tree. Because the information in MYCIN is uncertain, the AND/OR tree is also used 
to compute certainty factors. Figure 12.3 shows an AND/OR tree with certainty factor 
computations. The user supplies the F values as an indication of the degree of certainty 
of the facts. These are essentially equivalent to degrees of presence in the EMERGE 
system (Hudson and Cohen, 1988). The Cs are computed certainty factors, and the As 
are attenuation factors based on the reliability of the production rule itself. All of these 
generate values between 0 and 1. The computations are done according to the fol-
lowing: 
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Figure 12.3 AND/OR Tree for MYCIN. 

AND Nodes 
The smallest certainty factor on the premise branches is multiplied by the attenuation fac-
tor of the production. The product is passed upward. 

OR Nodes 
The certainty factors of the branches reinforce each other according to the following: 

C = C\ + Ci — C\ C2 

where each certainty factor is also multiplied by the attenuation factor. If the plausibility sinks 
below a prespecified level, the hypothesis is suppressed. 

12.8.2 Forward-Chaining 

Forward-chaining collects information that appears in antecedents of rules. When 
enough information is accumulated, one or more rules may be substantiated. As op-
posed to backward-chaining, which concentrates on confirming one hypothesis at a 
time, forward-chaining systems may appear to the user to be in random order, for the 
information collected may not be confined to one rule. Forward-chaining also uses the 
basic AND/OR tree structure. 

12.9 HIGHER-LEVEL REASONING METHODOLOGIES 

12.9.1 Inference Engines 

Rule-based expert systems use inference engines to determine when a rule has 
been substantiated. The rule base searching techniques described earlier are used to 
accumulate information that the inference engine employs to make the determination 
of substantiation. There are a number of types of inference engines. 

12.9.1.1 Binary Logic Engines. The early expert systems such as DENDRAL 
(Buchanan and Feigenbaum, 1978) and MYCIN (Shortliffe, 1976) used binary logic en-
gines in which rules were of the form: 
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IF Antecedent 1 
AND 

Antecedent 2 
AND 

Antecedent n 
THEN Conclusion 
A number of variations on this structure are possible while still maintaining a binary 
inference engine, including the use of disjunctions (ORs) and counts (a specified num-
ber in a list) as in the original implementation of the EMERGE system (Hudson and 
Estrin, 1984). 

12.9.1.2 Approximate Reasoning Engines. Early expert systems used bi-
nary search engines in conjunction with a certainty factor to account for uncertain in-
formation, uncertain implications, and missing information. Later systems used more 
complex reasoning that incorporated these concepts into the inference engine itself. 
For example, consider the approximate reasoning implementation of the EMERGE 
system: 

Antecedent 1 
Antecedent 2 

Weighting Factor 

w2 

Degree of Presence 

d2 

Antecedent n wn dn 

Rule is substantiated if Ds > T 

where w>; = Relative weight of antecedent / 
dt = Degree of presence of rth symptom 
Ds = Degree of substantiation 
T = Rule threshold 

Thus a process of evidence aggregation must be used to determine Ds. This inference 
engine is discussed in detail in the case study presented in Chapter 18. 

12.9.1.3 Fuzzy Logic Engines. A number of approaches to the development 
of inference engines have grown out of the application of fuzzy logic that replaces tra-
ditional binary logic. Some methods for implementing fuzzy logic engines along with 
applications are discussed in Chapter 16. 

12.9.1.4 Probability-Based Engines. Traditional probability approaches 
such as Bayes' Rules can be used as the reasoning methodology in an inference engine. 
A number of extensions, such as Patrick's complex classes and the Dempster-Shafer 
theory of evidence can also be used. (Refer to Chapter 15 for details regarding these 
methods.) 
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12.9.2 Cognitive Models 

Cognitive models use techniques from human reasoning to construct programs 
that can solve problems (Cohen and Feigenbaum, 1982). Early work in this area was 
done by Newell and Simon (1956). Their initial work on the logic theorist program 
(LT) resulted in a method for problem solving that did not appear to mimic the human 
process. LT worked backward from theorems to axioms. As a result, they rewrote the 
system. The result was the general problem solver (GPS) (Newell and Simon, 1963) 
which used means-ends analysis as a reasoning methodology. Other approaches in-
cluded the use of beliefs to guide the reasoning of the system. One of the best known 
systems that used this approach was PARRY (Colby, 1975), a system that modeled a 
set of paranoid beliefs. These systems are outside the scope of this book; for those read-
ers who are interested, some good references are Barr and Feigenbaum (1982), Jack-
son (1974), and Winston (1977). 

12.9.3 Automatic Deduction 

A large part of AI research has been devoted to automatic deduction. Much of 
this work is based on the resolution principle, which is a method for deducing conclu-
sions from statements that have been formulated using predicate calculus. Represen-
tation strategies for predicate calculus were discussed in Chapter 10. Although this 
topic is also outside the scope of this text, an example is given here for those who are 
interesting in pursuing this topic. 

The connectives that are used are Λ (AND), v (OR), => (implies), and ~ (NOT). 
The idea is to devise a well-formed formula (wff) for which a predicate (T or F) can be 
established. Universal quantifiers (V) and existential quantifiers (3) are also used. Con-
sider the statement: All diabetics have elevated blood sugar. This statement would be 
written as: 

Vx [diabetics(x) => blood sugar(.x, elevated)] (universal) 

while the statement There is an uncontrolled diabetic would be written as: 

3Χ[(Λ:, diabetic) Λ (Χ, uncontrolled)] (existential) 

There is a set of rules for converting statements into wff s whose truth-values can then 
be determined. These techniques are used in automated theorem proving as well as in 
the implementation of any binary logic reasoning procedure. For more details, see Nils-
son (1971). 

12.9.4 Natural Language Processing 

Natural language processing is another broad topic in artificial intelligence re-
search. It is useful in decision-support systems in the development of user interfaces. 
Most decision-support systems use a subset of a natural language, thus simplifying the 
problem. For example, MYCIN (Shortliffe, 1976) uses a subset of natural language pro-
cessing in its question-answering routine. The DOCTOR system, which was the inter-
pretive part of ELIZA (Weizenbaum, 1966) uses a more complex subset in asking 
questions. More complex natural language processing is seen in the STUDENT 
(Bobrow, 1968) program that does translation and in Quillian's work on language un-
derstanding (Quillian, 1968). For recent work on natural language interfaces, refer to 
Krulu (1991). 
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12.10 EXAMPLES IN BIOMEDICAL EXPERT SYSTEMS 

One of the major areas of expert systems development has been that of biomedical ap-
plications (Barr and Feigenbaum, 1982). Many of these systems have been described in 
Chapter 9. Some of the major systems include DENDRAL (Buchanan, Sutherland, 
and Feigenbaum, 1969), MYCIN (Shorthffe, 1976), CASNET (Weiss et al., 1978), IN-
TERNIST (Miller, Pople, and Myers, 1982), ONCOCIN (Shortliffe 1981), Taking the 
Present Illness (Pauker et al., 1976), Digitalis Therapy Advisor (Jelliffe, Buell, and Kal-
abe, 1972), and EMERGE (Hudson and Estrin, 1984). A survey of early systems is 
given in Andriole (1985). Several of these systems have been expanded to include tools 
for general rule base development such as EMYCIN and EXPERT (U.S. Department 
of Health, 1980). A number of biomedical expert systems with fuzzy logic components 
are discussed in Chapter 16. 

12.11 SUMMARY 

Artificial intelligence research covers a broad range of topics, some of which have been 
mentioned here briefly. This chapter focuses on the methods that are most relevant to 
developing decision-support systems for the biomedical sciences. For those readers 
who are interested in a more general view of artificial intelligence, there are a number 
of texts that cover a broad range of AI topics, such as problem solving, game playing, 
theorem proving, semantic interpretation, and perception (Jackson, 1974; Dean, Allen, 
and Aloimonos, 1995). 

Although the methods described here have resulted in a number of useful and 
impressive decision-support systems, much work remains to be done. Some of the un-
solved problems that remain include better representation of high-level knowledge, 
more adequate understanding of the human reasoning process, and better under-
standing of physiological concepts that could produce more systems that utilize deep 
or causal reasoning strategies. 

EXERCISES 

1. (a) Show the unfoldment of the graph: 

a ► d 

/ 
c 

V 
(b) Give an example of an application for which the unfoldment would be useful. 

2. (a) Convert the following binary tree to a directed ordered forest: 

n 
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(b) Give an example of a problem that could be represented by a directed ordered 
forest. 

3. Given the tree: 

*Goal node 

(a) List the order in which the nodes are evaluated in a depth-first search. 
(b) Do the same for a breadth-first search. 

4. For the tree 

*Goal node 

give the order of node evaluation for the uniform cost algorithm, with the cost indi-
cated on each branch. 

5. For the AND/OR tree, where □ indicates an AND node and O indicates an OR node, 

2 0 -3 1 2 3 2 1 0 

(a) Evaluate the start node using the minimax technique. Show the value of each node. 
(b) Indicate which nodes would not have to be evaluated if alpha-beta was used in-

stead. 
6. Assume you have the following two rules in a knowledge base: 

IF BP < 100/60 
AND 
Skin cold and clammy 
AND 
Dizzy 

THEN There is evidence that the patient has an MI. 
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IF ECG shows multiple PVCs 
AND 
BP < 100/60 
AND 
Abnormal mental state 

THEN There is evidence the patient has an MI. 

(a) Construct an AND/OR tree corresponding to the searching of these rules. 
(b) Show the backward-chaining procedure for the AND/OR tree. 
(c) Show the forward-chaining procedure for the AND/OR tree. 

7. What are the advantages of using a fuzzy or probabilistic inference engine in place of 
an inference engine based on Boolean (or binary) logic? What are the disadvantages? 
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Validation and Evaluation 

13.1 INTRODUCTION 

In Chapter 8, we discussed validation and evaluation of decision-support systems 
based on neural network algorithms. Although some of the issues are the same for 
knowledge-based systems, there are some inherent differences. The algorithm must be 
validated separately, but this process is not as straightforward as is the case for neural 
network algorithms. The knowledge base itself, as it is usually expert-derived, poses to-
tally different problems for validation than the neural network approach that relies on 
database information. Standard techniques can be employed to verify the soundness of 
algorithms (Yourdan, 1975). These approaches are discussed in this chapter. 

13.2 ALGORITHMIC EVALUATION 

As in neural network models, the inference engine and knowledge base are considered 
to be separate entities. In practice this is not always the case. Most systems become 
more efficient when they are designed for a specific application. One method for 
achieving this end in knowledge-based systems is to allow the inference engine to re-
main independent and to incorporate knowledge to optimize the process for a partic-
ular application through the use of meta rules. Often, however, some changes are 
made either in searching strategies or in the inference engine that makes it domain-
dependent. 

13.2.1 Searching Algorithm 

Some strategy must be developed for searching the rules, frames, or other knowl-
edge representation structure. 

13.2.1.1 AND/OR Trees. Evaluation of AND/OR tree searching algorithms 
is fairly straightforward. A number of aspects must be evaluated: 
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1. Searching 
(a) Proper branching under all possible conditions. 
(b) Proper handling of termination conditions either through the arrival at a 

terminal node, termination at a specified level, or pruning. 
(c) Return of proper Boolean value under all circumstances. 

2. Conversion of rules to the AND/OR structure 

For rule-based systems, the rules must be represented in a knowledge structure 
that can be utilized by the AND/OR tree searching. As the knowledge base will 
change, this conversion should be automated. 

13.2.1.2 Control by Meta Rules. As we saw in Chapter 11, meta rules are 
used to supply information to the system regarding the organization of knowledge. The 
algorithm must recognize the meta rules and implement the strategies they suggest. In 
general, the algorithm for accomplishing this must be reevaluated for each set of meta 
rules because the action portions will change and will themselves affect the flow of con-
trol of the system. 

13.2.1.3 Data-Driven Search. Systems that use data-driven search provide 
additional problems for evaluation. In a data-driven search, the information entered by 
the user determines the starting point of the rule search. For example, in the data-
driven version of the EMERGE system, the user may enter any pertinent information 
that is available, such as: 

Syncope 
Low blood pressure 
Dizziness 

An attempt is made to find these data in the antecedent portion of the rule. If a match 
is found, the search begins at that point. If the initial rule is not substantiated, an order 
of search for the remainder of the rules must then be determined. This may be done 
through the use of meta rules or through some other structure built into the system. As 
with the testing of meta rules, testing of data-driven approaches must be done in gen-
eral in conjunction with the specific application. 

13.2.1.4 Hierarchical Search Hierarchical search algorithms are among the 
easiest to test. However, most knowledge-based systems use some additional form of 
searching in addition to hierarchical searching, although hierarchical searching may be 
done at a meta level to organize subsets of information. 

13.2.2 Inference Engine 

As we have seen in earlier chapters, there are a number of types of inference en-
gines, including those based on binary logic, fuzzy logic, probabilistic reasoning, and 
other techniques of approximate reasoning. Some of these methods pose serious prob-
lems in the evaluation phase. 

13.2.2.1 Binary Engines. Binary engines usually correspond to AND/OR 
searching. The objective of the binary engine is to attempt to substantiate a rule. For 
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these engines, the implementation is straightforward: the function of each binary op-
erator must be verified. These generally include conjunction, disjunction, and verifica-
tion of a fixed number in a list. 

13.2.2.2 Complex Engines. As we will see in the following chapters, there are 
a number of complex variations of inference engines based on probability theory, fuzzy 
logic, approximate reasoning, or some combination. Checking the accuracy of these en-
gines can be more complex, but as they are all algorithmic their accuracy is verifiable. 
The major difficulty in verifying complex engines arises in conjunction with knowledge 
content, a subject to be addressed in the next section. 

13.2.3 Aggregation of Evidence 

In many knowledge-based systems, evidence is aggregated through substantia-
tion of a series of rules. Many methods can be used to accomplish the aggregation of 
evidence, including the Dempster-Shafer Theory of Evidence (discussed in Chapter 
15) and fuzzy logic techniques for evidence aggregation (discussed in Chapter 16). 
Testing the algorithm for evidence aggregation is straightforward for well-defined the-
oretical approaches. Whether or not the outcome of this process makes clinical sense 
must be verified in conjunction with the knowledge base. 

13.2.4 Use of Meta Knowledge 

The use of meta knowledge that is usually represented in the form of rules is in-
herently nonalgorithmic. The appropriateness of the use of meta knowledge must be 
evaluated in the combined system. 

13.3 KNOWLEDGE BASE EVALUATION 

Evaluation of the knowledge base itself has nothing to do with the type of algorithm 
used. The purpose of this phase of evaluation is to certify that the knowledge base rep-
resents sound clinical judgment. In Section 13.4, we will discuss the interface between 
the knowledge base and the algorithm. 

13.3.1 Expert-Derived Information 

Once the knowledge base has been constructed, its final form should be verified 
with the original expert or experts from whom the information was obtained. If possi-
ble, it should also be verified with another recognized expert in the field to ascertain its 
appropriateness. None of these actions, however, will assure completeness and consis-
tency of the knowledge base. Another possible approach is to try to verify the rules 
through use of a learning algorithm that operates on a database of relevant informa-
tion. This approach is fraught with practical difficulties. First, it is very difficult to find 
one database, or even a collection of databases, that will correspond to the information 
contained in the knowledge base. Second, use of a learning algorithm in conjunction 
with an adequate database will probably not produce knowledge in the same format 
contained in the knowledge base. This approach may, however, have some utility in 
verifying the breadth of the knowledge base and may in some cases expose some con-
tradictory aspects. 
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13.3.1.1 Individual Units of Knowledge. Individual units of knowledge, usu-
ally rules, must be verified for accuracy. This part is fairly straightforward. The difficulty 
of confirming units of knowledge depends to some extent on the knowledge represen-
tation. If the knowledge is represented by binary rules, it is only necessary to verify that 
the antecedents are correctly stated and that the combination of the antecedents 
through use of the specified binary operator leads to the stated action or conclusion. If 
the implication carries a certainty factor, then some means of evaluating the appropri-
ateness of the value of the certainty factor must be established. If, however, approxi-
mate reasoning techniques are used, this process may become much more complex. 
For example, each antecedent may carry with it a relative degree of importance. The 
suitability of this relative degree must be verified. Very often different experts will dis-
agree on the numerical values for the relative degree of importance. In addition, the 
rule itself is substantiated if it exceeds a specified threshold. This suitability of the value 
for the threshold must be established in the same manner as the relative degree of im-
portance of each antecedent. 

13.3.1.2 Combination of Knowledge. We mentioned briefly in Section 13.1.3 
the verification of knowledge aggregation. In order to succeed in knowledge aggrega-
tion and in general consistency of the system, the knowledge base must adhere to the 
following: 

1. No contradictory rules 
2. No rules that result in the same information contributing to a different 

degree 
3. Sufficient rules to cover the domain 

Points 1 and 2 are relatively easy to verify; point 3 at best can only be approximated. 

13.3.2 Learned Information 

As we saw in Chapter 11, some knowledge-based systems derive their knowledge 
from learned information. If some form of learning is used, then the database or ex-
amples from which this information came must be verified. In general, the points out-
lined in Chapter 8 for validation and evaluation of systems dependent on learning al-
gorithms apply here. 

13.3.3 Meta Knowledge 

If meta knowledge is used to control flow of information, the usefulness of 
this information must be addressed. Usually meta knowledge is still domain-specific 
as this information is intended to optimize flow for the domain under considera-
tion. This knowledge is usually subjective and is often evaluated in a trial-and-error 
format. 

13.4 SYSTEM EVALUATION 

The true test of an expert system is to evaluate the algorithmic base in conjunction 
with the domain knowledge. Obviously, this portion of the evaluation must be per-
formed with each knowledge base and, ideally, repeated if the knowledge base is mod-
ified. A number of articles have addressed knowledge base verification, usually in con-
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junction with a specific clinical support system (Einbinder, Remz, and Cochran, 1996; 
Karlsson et al., 1997; Nathwani et al., 1997; Vadher, Patterson, and Leaning, 1997). 

13.4.1 Evaluation with Original Knowledge Base 

An extensive evaluation should be done that is geared to utilizing all rules in the 
knowledge base. Appropriate case studies must be designed to accomplish this task. 
Several questions must be answered in this phase: 

Does the system produce the expected output? 
Does the system produce consistent output? 
Do the results make sense for the domain? 

As an example of the third question, if it is a clinical decision-support system, do the 
results make clinical sense? To answer this question properly, the domain expert must 
review the results. 

13.4.2 Evaluation with Updated Knowledge Base 

In many knowledge-based systems, the substantiation of one rule may do one or 
more of the following: 

Alter the order of invocation of additional rules. 
Influence the substantiation of other rules. 
Contribute to aggregation of evidence. 

If one or more of these actions occur, then changing one rule can change the function-
ing of the entire system. Because of this sensitivity, care must be taken to restrict the 
alteration of the rule base to true experts. If substantial changes are made, the entire 
combined system should be reevaluated. 

13.4.3 Evaluation of User Interaction Parameters 

One of the strong points of knowledge-based systems compared to decision-
support systems based on numerical computation is their enhanced ability to commu-
nicate with users in a more "human-like" fashion, both in terms of collecting informa-
tion and providing not only decisions but also explanations of these decisions. 

13.4.3.1 Interpretation of Input. Many knowledge-based systems allow input 
in natural language and provide such features as partial matching of input and inter-
pretation of synonyms. Care must be taken, especially with partial matching, to ensure 
that inappropriate matches do not occur. For example, consider the partial matching 
capabilities of the EMERGE system. Both words and phrases are matched to a thresh-
old level that can be adjusted. Thus, if the word match threshold is 0.75, the following 
scenario could occur. 

User input: Normal mental status 
Antecedent: Abnormal mental status 

Word 1 matches six out of eight letters for a 75 percent match, while words 2 and 3 
match exactly. This antecedent would then be substantiated. This situation is avoided 



210 Chapter 13 ■ Validation and Evaluation 

in the EMERGE system by only attempting matches on words that differ in length by 
no more than 1, and not allowing the threshold to go below 80 percent. However, in 
practice, unanticipated problems such as these often arise. 

13.4.3.2 Explanation Capabilities. Explanation capabilities usually rely on 
regurgitating the substantiated rules. The usefulness of the explanation depends on the 
clarity of expression in the rules and in the order in which they were substantiated. For 
example, if fifteen rules were substantiated, perhaps only eight of them would be re-
lated to the final decision results. Depending on the order, rules that had no bearing on 
the final outcome might be interspersed with relevant rules. The order of the rules will 
depend on the searching strategy—that is, backward- versus forward-chaining 
searches, as well as on the meta knowledge. 

13.4.4 Validation with Clinical Data 

Consider that we are developing a clinical decision-support system for a specific 
problem domain. The ultimate test is to evaluate it with clinical data, either retrospec-
tively or prospectively. In this section, we examine some practical problems that may 
arise in this evaluation process. 

13.4.4.1 Sources of Clinical Data. The first step in this process is to identify 
sources of clinical data that can be used for the evaluation. The first question to resolve 
is whether the data set will be retrospective or prospective. There are advantages and 
disadvantages for both approaches. These factors must be considered in terms of the 
problem itself. 

13.4.4.1.1 RETROSPECTIVE STUDIES 

Advantages 
1. The data set is available and can be used immediately. 
2. There is a possibility of obtaining followup data. 

Disadvantages 
1. The study is limited by the data that were collected. 
2. The problem of missing information is certain to arise. 

13.4.4.1.2 PROSPECTIVE STUDIES 

Advantages 
1. A comprehensive set of data items can be collected. 
2. Missing values can be reduced. 

Disadvantages 
1. The time frame for collection may be lengthy. 
2. Cooperation from clinical staff must be assured. 

13.4.4.2 Selection of Cases. The selection of cases is crucial. The number and 
type must be selected to fully evaluate the system. Cases must be selected to cover the 
following: 

1. All possible diagnoses or outcomes. 
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2. The use of all rules at least once. 
3. The use of combinations of rules. 

13.4.4.3 Actual Outcome. One important parameter is the actual outcome 
for the case. The medical record will contain the diagnosis, treatment, or outcome as in-
terpreted by the physician or other medical professional. This may not be the actual di-
agnosis or the correct treatment. Thus the comparison is between the recommendation 
of the system and what was actually done, not what should have been done. Some of 
these problems can be alleviated by using followup information to see if the actual di-
agnosis or treatment was borne out by subsequent information. 

13.4.4.4 Results from Clinical Decision-Support System. In general, the 
form of the clinical decision-support results is dependent on the objective. This deci-
sion must be matched with the actual outcome as described earlier. It is often useful to 
divide the analysis into categories to emphasize the performance of the system under 
different circumstances. 

EXAMPLE: EMERGE Evaluation 

The objective of the EMERGE system is to determine if patients presenting to the emer-
gency room with chest pain should be admitted as inpatients. The EMERGE system was evalu-
ated using both retrospective and prospective data. Data were used from three hospitals: a pub-
lic county hospital, a private hospital, and a Veterans Affairs hospital. The data were mixed so 
that the patients were not identified with a particular hospital. In the retrospective study, charts 
were obtained from the files of each emergency room for a specified three-year time period. 
These cases were identified as having presented with chest pain. Admission decisions made by 
EMERGE were compared with admission decisions as indicated on the charts. Followup records 
were used to ascertain the appropriateness of the actual hospital decision. 

Table 13.1 indicates three categories of patients: (a) those who were subsequently found 
to have a problem warranting admission, (b) those with no discernible problem warranting ad-

TABLE 13.1 EMERGE Evaluation 

Admit 

(a) Patients with Serious Illness 
EMERGE Recommendation 112 
Actual Hospital Decision 114 

Admit 

(b) Patients with No Serious Illness 
EMERGE Recommendation 0 
Actual Hospital Decision 11 

Admit 

(c) Borderline Cases 
EMERGE Recommendation 20 
Actual Hospital Decision 29 

Discharge 

4* 
2 

Discharge 

93 
82 

Discharge 

15 
6 

* Admitted for reasons other than chest pain 
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mission, and (c) borderline cases (Hudson and Cohen, 1984). These results illustrate a number 
of points that should be considered in evaluating systems. Referring to part (a), although four 
patients were admitted to the hospital for whom EMERGE did not recommend admission, it 
was found that these patients were admitted for psychiatric reasons, not for cardiac reasons. 
Hence it is important to consider the scope of the expert system in both the evaluation and use 
of the expert system. In part (a), it was also found that the hospital did not admit two patients 
for whom EMERGE recommended admittance. Subsequent records showed that these patients 
returned within a 24-hour period with confirmed diagnoses of myocardial infarction. In part (b), 
the hospitals actually admitted eleven patients unnecessarily for whom EMERGE did not rec-
ommend admittance. Thus important resources were used that could have been better directed 
to the seriously ill. Part (c) demonstrates a different point. These patients were borderline cases 
for whom the actual correct decision could not be ascertained. None of these patients was sub-
sequently found to have any serious illness. EMERGE admitted many fewer of these patients 
than the hospitals, thus demonstrating that use of the system could result in considerable cost 
benefits to the hospital, an outcome that was not the intent of the original system. Because of the 
sizable number of borderline cases, EMERGE was subsequently revised to use approximate 
reasoning techniques that have been shown to have the most impact in borderline cases (Hud-
son and Cohen, 1988). 

Grouping patients into these three categories for evaluation was important for a number 
of reasons as illustrated by the following example. Assume all patients were instead put into a 
chart indicating whether the correct decision was made. The result is the following table: 

EMERGE Recommendation 
Actual Hospital Decision 

Admit Discharge 

132 112 
154 90 

In this format it is not possible to draw implications regarding the risk that is incurred by the de-
cision. For example, the risk of life is great if a seriously ill patient is discharged, but there is lit-
tle risk if a well person is admitted. On the other hand, admittance of a well person is a costly 
decision in economic terms, whereas the discharge of an ill person is not. 

13.5 SUMMARY 

Validation of a knowledge-based system should guarantee the following to the highest 
degree possible: 

1. The algorithm is accurate. 
2. The knowledge base is: 

Accurate. 
Consistent. 
Complete within its scope. 
Up-to-date. 

3. The combined system produces credible results. 

Evaluation of a knowledge-based system should provide information regarding: 

1. The scope of the system. 
2. The accuracy of the system. 
3. The analysis of risk and/or cost incurred by the use of the system. 
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EXERCISES 

1. (a) Write an algorithm to compute a truth table for two binary variables A and B and 
the logical constructs AND, OR, Exclusive OR, and NOT. 

(b) Make up a data set that will completely test your algorithm. 
2. Name three methods that could be used to evaluate an expert-supplied knowledge 

base. Which do you think would be the best approach of the three? Why? 
3. Give two examples of meta rules that might be used in a decision-support system for 

diagnosis of pneumonia. How do these rules differ from domain knowledge rules? How 
could you evaluate the effectiveness of these meta rules? 

4. Because of the rapid increase in medical knowledge, how often do you feel that a 
knowledge base for a clinical support system should be updated? Can you think of 
ways in which the medical literature can be effectively used to help in the updating 
process? 
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Genetic Algorithms 

14.1 FOUNDATIONS 

As the name implies, genetic algorithms (GAs) are based on the biological concept of 
genetic combination to produce offspring. The general idea is that through survival-
of-the-fittest, the natural selection process will retain those individuals whose 
genetic characteristics best suit them to the environment in which they must exist. The 
terminology used is derived from genetics. An individual (also called a genotype or 
structure) is one member of the group to be considered. Individuals may also be re-
ferred to as strings or chromosomes. Of course, in biological systems, every organism 
is made up of a number of chromosomes. For the purposes of this discussion all indi-
viduals are assumed to have only one chromosome. Diploidy dominance, which deals 
with pairs of chromosomes, is sometimes used to generate characteristics for future 
generations of individuals. Chromosomes are made up of units called genes, which are 
equivalent to features that were discussed earlier in pattern recognition applications. 
Genes for specific characteristics are located at specific loci or string positions. Each 
gene may be in one of several states, called alleles, which are equivalent to feature 
values. 

Each genotype in a genetic algorithm sense represents a potential solution to a 
problem. An evolutionary process is analogous to searching a space for possible solu-
tions. Genetic algorithms attempt to strike a balance between optimal and exhaustive 
search. 

A genetic algorithm must have five components (Michalewicz, 1992): 

A genetic representation of potential solutions. 
An initial population of potential solutions. 
An evaluation function that determines fitness for the environment. 
Genetic operators that alter the composition of offspring. 
Values for parameters used by the GA. 
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14.2 REPRESENTATION SCHEMES 

In many genetic algorithms, only binary genes are used. Thus a binary vector of length 
n represents a chromosome with n genes. Consider the binary vector of length 8: 

(1010 0101) (14.1) 

If this vector is meant to represent a decimal number, it is easily converted by 

" f « t 2 * (14.2) 
k=0 

where an is the nth value from the right, n = 0,1, . . ., n - 1. The value of this vector 
is thus 165. However, the binary vector could also represent values of eight features, 
for example, the presence or absence of each of eight symptoms. Although the original 
approach to genetic algorithms used only binary representations, the method can be 
easily extended to include vectors made up of real numbers. 

14.3 EVALUATION FUNCTIONS 

Once a problem is described in terms of vector notation, each vector is evaluated in 
terms of its suitability as a solution to the problem. The idea is based on the principle 
of natural selection in nature that postulates that those individuals who are most suited 
to the environment will survive and produce offspring—a principle often referred to as 
Darwinian fitness. Evaluation functions take a number of forms. Some examples in-
clude conversion of the binary representation into a decimal quantity that is compared 
to the other individuals in the population, with either the highest value or lowest value 
selected as most suitable. Other evaluation functions may be based on distance mea-
sures such as the Hamming distance. 

14.4 GENETIC OPERATORS 

Individuals are combined using basic genetic principles such as mutation and crossover. 

14.4.1 Mutation 

A mutation occurs within a chromosome, usually in just one location. For exam-
ple, the individual 

( 1 0 1 0 1 1 0 1 ) (14.3) 

is a one-bit mutation in location 5 of the individual in (14.1). 

14.4.2 Crossover 

Crossover takes place between two individuals to produce offspring. For exam-
ple, for the two individuals: 

(111 0 0  0  0  0 )  (14.4 ) 

(01011111 )  (14.5 ) 

a crossover of locations 3-6 results in the offspring: 
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( 0 1 0 0 0 0 1 1 ) . (14.6) 

Crossover is a recombination technique. 

14.5 EVOLUTION STRATEGIES 

In the following strategies, the common goal is to search a set of binary strings b of 
length n. The objective is to maximize an evaluation function/. For purposes of demon-
stration, we will define the evaluation function 

Abi) = rfOW = f>(/) (14.7) 
7 = 1 

where 8(j) = 1 ifbiy = be/ 
0 \ί\Φ\ι 

where d is the Hamming distance between a string b, in the set and the goal vector bg. 
The function has a global maximum n when bj = bg and a global minimum 0 when 
b; = [b,]c. 

14.5.1 Genetic Algorithms 

The general concept of a genetic algorithm can be described by the following 
(Adeli and Hung, 1995): 

Genetic Algorithm 
Encode the decision variables as a chromosome. 
Initialize an initial set of chromosomes as the first generation. 
Repeat until the stopping criterion is met: 

Evaluate the objective function values for the current population. 
Select some chromosomes with higher fitness values to reproduce children for 
the next generation. 
Apply crossover and mutation to the parent chromosomes selected in the previ-
ous step. 
Replace the entire population with the next generation. 

14.5.2 Optimization Strategies 

Optimization techniques, as we saw in earlier chapters, are geared to maximizing 
or minimizing criteria functions. Two optimization approaches are briefly outlined 
here. 

14.5.2.1 Hill Climbing. There are a number of approaches to hill climbing. 
Here we consider steepest ascent hill climbing. An algorithm for an iterative procedure 
for hill climbing follows (see Michalewicz, 1992): 

Hill-Climbing Algorithm 
Initialize 

i = 0 
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Repeat until i > number of iterations. 
Randomly select a string bj. 
Evaluate hy 

Repeat if i(bj) < ffbjj. 
Create n new strings by mutation of subsequent bits in bj. 
Select bk with the largest evaluation function. 
If f(bj) < f(b]J, then replace bj with bk. 

i = i + i 

14.5.2.2 Simulated Annealing. Another approach is simulated annealing, 
which is a stochastic process derived from statistical mechanics whose goal is to find 
near globally minimum cost solutions to large optimization problems (Davis, 1987). It 
was first applied to very large scale integration (VLSI) design. Statistical mechanics 
studies the behavior of large numbers of interacting components such as atoms in ther-
mal equilibrium. The probability that the system is in a certain state is given by the 
Boltzmann distribution: 

ni{s) = sxp[(-E(s)/kT)]/ Σ cxp[(-E(w)/kT) 
weS 

(14.8) 

where k is the Boltzmann constant and S is the set of all possible configurations. In 
annealing processes, the nature of low-energy states is investigated. To achieve a low-
energy state, an annealing process must be used in which the temperature of the sys-
tem is first elevated and then gradually lowered in stages to achieve thermal equilib-
rium at each stage. To apply this process to optimization, the energy function is 
changed to the objective function, the particle configuration becomes the configuration 
of parameter values, and the temperature becomes the control parameter for the 
process. The simulated annealing algorithm for optimization follows. 

Simulated Annealing Algorithm 
Initialize 

i = 0 

Select bj at random. 
T = 0 
Evaluate bj. 

Repeat until stop criterion. 
Repeat until termination condition. 

Select a new string bk by mutating a single bit of bj. 
If f(bj) < ffbfc), then replace bj with bk. 
Else ifrandomfO, 1] < exp /(ffbjj - ffbjJj/T/, then replace bj with bk. 

T = g(T,i) 
i = i + 2 

14.5.3 Genetic Search 

Most genetic algorithms rely upon searching the space of individuals; hence 
many of the techniques mentioned in Chapter 12 apply. In all searching problems, 
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there is a tradeoff between exhaustive search that produces the best solution and op-
timal search that produces an acceptable solution at a lower cost. Some special con-
siderations are involved when dealing with the genetic approach. Using the basic sur-
vival-of-the-fittest approach, we find that the proportions of better schema increase 
and the proportions of less desirable schema decrease that should lead to convergence 
of the system. However, premature convergence can occur before the optimal solution 
is found. 

A problem studied in population genetics is genetic drift in which useful schemata 
disappear from the population. This occurs because a parent string can only produce 
an integral number of offspring and the number of instances in a schema cannot reflect 
the desired proportion with arbitrary position in a finite population. This results in a 
source of sampling error with stochastic selection processes and is believed to be a pri-
mary source of premature convergence in genetic algorithms (Davis, 1987; DeJong, 
1975). One solution to counter the loss of diversity of the population has been pro-
posed (Mauldin, 1984). A uniqueness value is computed which is the minimum Ham-
ming distance allowed between any offspring and all existing strings in the population. 
If a new individual is too close, the allele values are randomly changed until the re-
quired distance is achieved. See Davis (1987) for details on improving efficiency for ge-
netic searching. Zurada, Marks, and Robinson (1994) presents a number of extensions 
of genetic algorithms. 

14.6 BIOMEDICAL EXAMPLES 

14.6.1 Literature References 

The medical literature for the last five years has over 200 applications of genetic 
algorithms to problems in biomedicine. Many of these are, naturally enough, in the 
area of DNA (Evans et al., 1997) and RNA (Notredame, O'Brien, and Higgins, 1997) 
analysis and other genetic studies (Bansal, Cannings, and Sheehan, 1997). However, the 
applications are diverse. One application is generation of sleep profiles using EEG 
data (Baumgart-Schmidt et al., 1997). In this work, genetic algorithms are used to re-
duce the number of features and to optimize the topologies of the networks. Another 
application in which a genetic algorithm is used for feature selection involves analysis 
of radiological images to classify mass and normal breast tissue (Sahiner et al., 1996). 
Genetic algorithms have also been used in analyzing spectroscopy data (Bangalore et 
al., 1996). A Ath-nearest-neighbor genetic algorithm has been applied to ligand inter-
actions in proteins (Raymer et al., 1997). In most of these applications, genetic algo-
rithms are used in conjunction with other techniques, resulting in hybrid genetic ap-
proaches. 

EXAMPLE: Selection of Wavelengths in Near-Infrared Spectroscopy 
As an example, consider the application of a genetic algorithm applied to near-infrared 

spectroscopy (Bangalore et al, 1996). The approach is used for automated wavelength selection 
while optimizing the number of latent variables. We will look at each component of a genetic al-
gorithm in terms of this example. 

Data Representation 
Inclusion of a particular spectral point is represented by a one and noninclusion by a zero. 

For the sets employed in the study, there are a total of 519 spectral points. Each chromosome 
consists of 520 genes, the first 519 of which represent these spectral points and the last of which 
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is a decimal integer representing the model size, which is the number of latent variables to be 
used in building the calibration model. 

Initial Population 
A starting point is taken in a spectral range in which the analyte is known to observe. For 

this model, the three absorption bands of glucose are used, which is represented by setting genes 
101-400 to Is. The initial model size (gene 520) is set to 20. The initial population is then formed 
by randomly perturbing this initial chromosome, genes 1-519. The perturbation of gene 520, the 
model size, is performed according to: 

"new v ^ i n i t i a l j ~*~ "initial 

where Anew is the new model size, Ainjtiai is the old model size, r is a Gaussian-distributed random 
deviate [JV(0,1)], and s is a user-controlled step size. 

Genetic Operators 
The recombination technique involves a one-point crossover method in which all genes up 

to a randomly chosen crossover point are swapped between parents to create two children. 

Evaluation Function 
The chromosomes are evaluated according to a fitness function. The samples are randomly 

split, with 80 percent comprising the calibration set and 20 percent comprising the prediction set. 
The replicate sample associated with a particular sample are kept together. The prediction set 
spectra are set aside for final testing of the optimized calibration models. The calibration set is 
split randomly into calibration and monitoring subsets. The fitness function is defined by the fol-
lowing: 

r r « r 

1/ X(c, - c,·')2 /(nc - A - 1) + X(m,· - m,') >(nm - K) (14.8) 

where nc and nm are the numbers of spectra in the calibration and monitoring subsets, respec-
tively; c, and rrii are the actual analyte concentration in the calibration and monitoring subsets, 
respectively; c/ and m/ are the predicted analyte concentration in the calibration and monitor-
ing subsets, respectively; A is the number of partial least squares (PLS) factors in the model; and 
w is a weighting factor to control the influence of A on the fitness function. 

Configuration 
The configuration of the genetic algorithm (GA) is made up of control parameters. Im-

portant configuration variables include the population size, the mutation probability (Pm), the 
initialization probability, the recombination probability (Pr), and the method of recombination. 

14.7 SUMMARY 

Although genetic algorithms offer an interesting approach for optimization and classi-
fication problems, most of the examples given to illustrate genetic algorithms are so-
called toy or game problems, such as the traveling salesman problem. Use of genetic 
algorithms in large-scale practical applications can present difficulties. In these appli-
cations, the original idea of binary input is generally altered to use more sophisticated 
data structures. 

Many of the implementations of genetic algorithms employ ad hoc techniques ei-
ther to improve the efficiency or to enhance the outcome of the system. Many of these 
approaches lack any theoretical basis. Performance enhancements are discussed in 
Davis (1991). In spite of these limitations, the use of genetic algorithms has produced 
some interesting applications, especially when combined with other techniques such as 
neural networks or decision theory. 
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EXERCISES 

1. Given the following initial population of 5-gene individuals: 
(10101) 
(1110 0) 
(01010) 
(10101) 

(a) Show the result of crossover between individuals 1 and 2 in bit positions 3 and 4. 
(b) Perform the same crossover for individuals 3 and 4 and show the new population. 
(c) Perform one iteration of the hill-climbing algorithm and one iteration of the simu-

lated annealing algorithm using the original population. 
2. (a) Define a practical problem that can be represented as a binary string of features. 

(b) Define an evaluation function for this problem. 
(c) Define one pass through a genetic algorithm for your problem using crossover and 

mutation. 
(d) Is this the best way to define the problem? If not, give an alternative formulation 

that you feel is more effective. 
(e) Can you still use the genetic algorithm on your reformulation? Explain. 
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Probabilistic Systems 

15.1 INTRODUCTION 

Statistical analysis remains one of the mainstays for analysis of medical data (Glantz, 
1992). Statistical techniques can be used not only for direct analysis and determination 
of significance but also for classification. Duda and Hart (1973) provide an in-depth 
analysis of statistical techniques for pattern classification. 

15.2 BAYESIAN APPROACHES 

One of the earliest learning algorithms was based on the Bayes theorem and is referred 
to as Bayesian Learning. 

15.2.1 Bayes'Rule 

Bayesian Learning is based on Bayes' Rule, which in its simplest form separates 
two categories based on one variable, according to the following: 

Ρ(ω,\χ) = p{x\oij) P((uj)/p(x) (15.1) 

2 

where p(x) = ^ p{x\o>j) Ρ{ω,) (15-2) 
7 = 1 

x: value of feature 
ωι: class 1 
ω2: class 2 
p(x\wj): state conditional probability density given that the state is class j (a 

priori) 
P{o>j): Probability of class j 
Ρ{ω}\χ): Probability of class ;' given x (a posteriori) 
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Consider the following example: 

x: Cholesterol level 
ωι: Presence of coronary artery disease (CAD) 
ω2: Absence of CAD 
Ρ(χ\(ύι): Probability of x given presence of CAD 
Ρ(χ|ω2): Probability of x given absence of CAD 
Z^Oi): Probability of CAD 
Ρ(ω2): Probability of no CAD 
P(coi|jt): Probability of CAD given x 
Ρ(ω2\χ): Probability of no CAD given x 

P(o>i) is the presence of CAD in the general population, and Ρ(ω2) is 1 — P(o>i)- In 
general, decision making is not this simple, and more than the one feature will be re-
quired to make a decision. Thus we require the «-dimensional version of Bayes' Rule: 

Ρ(ω;|χ) = P(x\oj) P(coy)/P(x) (15.3) 

P(x) = Σ Ρ(χ|ω,) Ρ(ω;) (15.4) 

This version also assumes c classes instead of 2. 

15.2.2 Bayes'Decision Theory 

Bayes' Decision Theory is based on the following construct for the probability of 
error: 

P(error|x) 

Therefore, decide 

Ρ(ωι\χ) if we decide w2 

P(Ü>2|X) if we decide ΜΊ (15.5) 

ωι if P(H>I|X) > Ρ(ω2|χ) 
ω2ΐίΡ(ω2\χ)>Ρ(ω1\χ) 

Applying Bayes' Rule, we find that this translates into 

Decide ωχ if ρ(χ|ωι) Ρ(ωχ) > Ρ(χ|ω2) Ρ(ω2). 
Otherwise, decide ω2. 

Figure 15.1 graphically illustrates the objective of a decision strategy with two 
overlapping probability distributions. The objective is to shift the dividing point so that 
the fewest errors are made. This decision may not be straightforward, however, for 
some decisions may carry more risk than other decisions. This is especially true in med-
ical problems. 

15.2.3 Risk Analysis 

The conditional risk can be defined by the following (Duda and Hart, 1973): 

1. Observe x. 
2. Take some action α,. 
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ρΜω,νίω,) pf* ! ' ' !» ! ) 

D 
ίρ(χ\ω2)Ρ(ω2) Ιρ(χΙω{)Ρ(«>,) 

(15.6) 

Decision Line (D) D 

Figure 15.1 Minimizing Error in Probability-Based Decision Making. 

3. If the true state of nature is ω^ then the loss is λ(α,-|ω,·). 
4. The probability that the true state of nature is ω; is Ρ(ω,|χ). 
5. The expected loss associated with taking this action is thus 

c 

R(ai\\) = X λ(α,Ιω,) Ρ(ω,-|χ) 
y"=i 

where i?(a,|x) is the conditional risk. 
The objective is to minimize the overall risk, which is given by 

R = fR(a\x) p(x) dx 

If i?(a|x) is as small as possible for all x, the overall risk will be minimized. 
Bayes' Decision Rule is the following: 

1. Compute the conditional risk i?(fl/|x) for i = 1, . . . , k. 
2. Select the action a, for which R{a,\x) is minimum. 
3. The resulting minimum risk is called the Bayes' Risk. 

The following example shows two-category classification using Bayes' Risk. 
Assume that a, represents the decision that the true state of nature is ω,. Then 
X.y = λ(α,|ω;) is the loss incurred for deciding ω, when the true state is ω,. Define the 
conditional risks 

(15.7) 

R{at\x) = Xu Ρ(ω1\χ) + λ12 Ρ(ω2|χ) 

R(a2\x) = λ2ί Ρ(ωι|χ) + λ22 Ρ(ω2\χ) 

(15.8) 

(15.9) 
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The general decision rule is 

Decide ω1 if R(ai\\) < R(a2\x) 

In terms of a posteriori probabilities, this is the same as 

Decide ωχ if (λ21 ~ λ-ιι) Ρ(ωι|χ) > (λ12 - λ22) Ρ(ω2|χ) 

The likelihood ratio is 

Ρ(χ|ω2) 
> 

(λ12 - λ22)Ρ(ω2) 
(λ21 - λ η ) Ρ ( ω ι ) 

(15.10) 

A special case of this procedure is the minimum error rate classification with the 
zero-one loss function: 

λ(α,·|ω,·) = i,/ = l, . . . , c (15.11) 

In this case, all errors are considered equally likely. The conditional risk is then 

i?(a,|x) = J λ(α,-Κ) P(wj\x) (15.12) 
i = l 

= Σ P(<»J\X) 

= 1 - Ρ(ω;·|χ) 

(15.13) 

(15.14) 

The classification rule is then 
Decide ω, if Ρ(ω,|χ) > ·Ρ(ω7|χ) for all i Φ j ; in other words, maximize .Ρ(ω,|χ). 

15.2.4 Supervised Bayesian Learning 

The general objective of Bayes' Decision Theory is to compute the a posteriori 
probabilities Ρ(ω,|χ). What happens if the a priori probabilities Ρ(ω,) and class-
conditional probabilities ρ(χ|ω,) are unknown? One solution is to try to use all infor-
mation that is available. Assume that we have a set of samples X. Then 

P(o>i\x,X) 
ρ(\\ωύ X) Ρ(ωί\Χ) 

— 
X ρ(χ\ωβ X) Ρ(ωβΧ) 
7 = 1 

(15.15) 

We then assume that the true a priori probabilities are known: 

Ρ{ω,\Χ) = Ρ(ω,). (15.16) 

We then have a supervised learning problem defined by the following: 
There are c sets of samples^!, . . . ,Xc where samples inXt: belong to ω,. 

Thus Ρ(χ|ωί5 X) can be determined separately for each class: 

Ρ(ω,-|χ,*) 
ρ(χΙω,, Χ) Ρ(ω,) 

J P(x^j, X) Ρ(ω,·) 
λ=1 

(15.17) 

Since there are c separate problems, we can drop the class notation and treat each 
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problem separately. The objective is to determine p(x\X). The following assumptions 
are made (Duda and Hart, 1973): 

The desired probability density p(x) is unknown. 
P(x) has known parametric form. 
The only unknown parameters are contained in a vector Θ; thus ρ(χ\β) is com-
pletely known. 
Prior information about Θ is contained inp(d). 

The general procedure is: 

Observe samples. 
Convert ρ(θ) mtop(Q\X). 
p(Q\x) should peak around the true value of Θ. 

The goal is to compute p(x\X) as an approximation top(x). 
The following equations are necessary: 

p(x\X) = ip(x, Q\X) de (15.18) 

p(x, θ|χ) = p(x\e, X) p(e\X) (15.19) 

Since the selection of each x is done independently 

p(x\e,X) = p(x\e) (15.20) 

Therefore 

p(x\X) = lp(x\9) p(e\X) de (15.21) 

The algorithm for general Bayesian Learning, for any distribution, is: 

The form of the density ρ(Χ|θ) is assumed to be known, but Θ is not known exactly. 
The initial knowledge about Θ is assumed to be contained in a known a priori den-
sity p(Q). 
The remainder of our knowledge about Θ is contained in a set X of n samples, 
Xi, . . . ,xn drawn independently according to the unknown probability law p(x). 

P(x\x) = / p(x|e) P(e\x) de (15.22) 

^ e ^ = Ä < ^ ( B a y e s ' R u l e ) (15·23) 

p(X\e) = Π p(xk\e) (15.24) 

This is an example of parameter estimation. In the next section we will discuss this sub-
ject in more detail. 

15.2.5 Decision Trees 

Decision trees were discussed briefly in Chapter 10. Referring to Figure 10.2, 
each branch has an associated probability with it. These probabilities are often deter-
mined using Bayes' Decision Theory. Decision trees can be used in a number of ways 
and can include risk factors, utility factors, and/or cost factors. Consider the following 
example: 
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A single vaccination costs $100. 
The average cost per case of hepatitis B is $453. 
The vaccine is 95 percent effective. 
The prevalence of hepatitis B is 6 percent. 

Figure 15.2 shows a decision tree with the original probabilities, the cumulative prob-
abilities in parentheses, the utility values in brackets, and the costs in braces. Absence 
of these measures on a node indicates that their values are zero. The expected utility 
UE and the expected cost CE are computed by: 

UE = 1 PiUi (15.25) 

CE = Σ PiQ (15.26) 

where P, = Cumulative Probability 
Ut — Utility value of each node 
Q = Cost value of each node 

Thus 

t/£(vaccination) = 0.997 
UE(no vaccination) = 0.94 
(^(vaccination) = $101.36 
C£(no vaccination) = $27.18 

Figure 15.2 Example of a Decision "ftee for Vaccination against Hepatitis B. 
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The cost effectiveness C is then computed by: 

C = UE/UC 

C(vaccination) = 101.664 
C(no vaccination) = 28.9 

(15.27) 

15.3 PARAMETER ESTIMATION 

In parameter distribution problems, we assume a known probability distribution. Most 
commonly, the normal distribution is assumed. The objective is to determine the para-
meters that define the distribution. For the normal distribution, these parameters are 
the mean μ and the standard deviation σ. We will examine two methods: maximum 
likelihood estimation and Bayesian estimation. 

15.3.1 Maximum Likelihood Estimation 

LetXi, . . . , Xc be sets of samples, one set per class, drawn according to ρ(χ\ω/). 
Assume ρ(χ|ω;) is uniquely determined by the parameter vector θ,. (For the normal dis-
tribution θ; = (μ, σ).) Assume that the classes are independent and that for each class 
X we have n samples xh . . . , xn. Then 

p(X\d) = Π p(xk\Q) 

The maximum likelihood Θ is the value that maximizes 

Define the gradient 

The log likelihood is 

Then 

Setting 

gives a set of c equations. 

p(*|e) = (els . . . ,e„)T. 

Ve = [δ/δβι, . . . , δ/δθρ]Γ 

Ζ(β) = iogp(*|e) 
n 

= X \ogp(xk\Ö) 

k=\ 

n 

ve/ = ]T ve/iogp(xfc|e) 
fc=l 

V6/ = 0 

(15.28) 

(15.29) 

(15.30) 

(15.31) 

(15.32) 

(15.33) 

(15.34) 

EXAMPLE: Multivariate Normal Distribution with Unknown Mean 

logρ(χ*|Μ) = -(1/2) log {(2π)α|σ|) ~ (1/2) (xfc " μ)τ σ"1 (x* - /*) (15.35) 

ν μ log ρ(χ,\μ) = σ-1 (xk -μ) (15.36) 
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£ σ"1 (xk - μ) = 0 
fc=l 

n n 

k=\ k=\ 

n 

ημ = X \k 
k=\ 

n 

μ = (1/n) X xk (Sample Mean) 

(15.37) 

(15.38) 

(15.39) 

(15.40) 

EXAMPLE: Univariate Normal Distribution with Unknown Mean and Variance 

Let θί = μ, θ2 = σ2 (15.41) 

ρ(χ) = (1/(25π·σ)) exp (-1/2)((* - μ)/σ)2) (15.42) 

logp(xk\Q) = -l/21og 27Γθ2 - (1/2Θ2) (xk - θι)2 (15.43) 

(1 - θ2) (xk - 6i) 
VQlogp(xk\Q) = -(1/2 θ2) + (Λ:* - θ!)/2θ2 

Σ(1/θ2)(**-θι) = 0 

μ =(1/η) X ** 
( f c = l 

σ2 = (1/η) J (xt - Μ)2 

(15.44) 

(15.45) 

(15.46) 

(15.47) 

15.3.2 Bayesian Estimation 

The Bayesian estimator follows the following procedure (Duda and Hart, 1973): 

Assume the probability density p(x) is unknown but has a known parametric 
form. 
Assume that the only unknown is the parameter vector Θ. 
Assume that the function p(x\ti) is completely known. 
Prior information about Θ is contained in a known a priori density p(6). 
Through sample observation, the a posteriori density ρ(θ\Χ) is computed. 

The final goal is to compute p(x\X) through Bayesian Learning, discussed in the previ-
ous section. 

EXAMPLE: Learning the Mean of a Univariate Normal Density 

Ρ{μϊΛ) Ιρ(Χ\μ)Ρ(μ)αμ 

Initialize 

(15.48) 

μ0: Initial guess for μ 
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σ0: Uncertainty about the guess for μ0 

ρ(μ) ~ Ν(μο,σ0
2) 

X = {x\, . . . ,xn) 

Then 

ρ(μ\Χ) = a ft p(^i)pQi) (15.49) 

/>(**!/*) ~ Ν(μ, σ2),ρ(μ) ~ Ν(μ0, σ0
2) (15.50) 

ρ{μ\Χ) = α Π (1/(25πσ)) exp [(-1/2)((χ - μ)/σ)2](ί/(25πσ0)) 
k~l exp [(-ί/2)((μ - μ0)/σ0)

2] (15.51) 

=α' exp[(-l/2) £ ((μ ~xk)/v))2 + (μ- μ0)/σ0)
2 (15.52) 

= α" exp[(-l/2)[((n/a2) + (1/σ0
2)2) - 2(1/σ2))£ xfc + (μ</μο2)/*]] (15.53) 

Equate coefficients with (1/(25πση)) exp [(-1/2)((μ, - μ,„)/σ„)2]: 

1/σ„2 = Mr2 + 1/σ0
2 (15.54) 

μη/ση
2 = (η/σ2)ηιη + μ·ο/σ0

2 where (15.55) 

w„ = (1/η) ^ */t (Sample Mean) (15.56) 
k=l 

Solving for μη and σ„2: 

μ„ = K V o 2 + tr2)] «« + [σ0
2/(«σ0

2 + σ2)] μ0 (15.57) 

σ„2 = (σ0
2σ2)/(ησ0

2+σ2) (15.58) 

μ,„ lies between mn and μ.0· 
If σ0 ^ 0, μ„ approaches the sample mean as n approaches °°. 
If σ0 = 0, μ = μ0· 

This learning procedure is illustrated in Figure 15.3. 

15.4 DISCRIMINANT ANALYSIS 

In Chapter 4, we discussed the Fisher Linear Discriminant, which is the basis for dis-
criminant analysis. Many standard statistical packages include discriminant analysis al-
gorithms for classifying data into one of two categories (Dixon et al., 1990). In general, 
a linear discriminant is used. The procedure identifies the parameter that accounts for 
the most variance between the two classes. It then selects the parameter that accounts 
for the highest remaining variance, and so forth. The procedure uses all but one sam-
ple to obtain a dividing surface and then tests its accuracy on the remaining sample. 
This procedure is repeated leaving out all samples once. The classification results are 
termed the jackknife classification. 

It is also possible to include nonlinear parameters in this process by defining new 
variables. For example, assume you have the following three parameters for determin-
ing the presence or absence of CAD: 
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Figure 15.3 Learning the Mean of a Normal Distribution. 

xx: 
x2: 
x3: 

heart rate 
blood pressure 
ST depression 

If you believe that the combination of heart rate and blood pressure is important, the 
so-called double product, which is often used as an indicator, can be defined: 

X4'. * 1 * * 2 

This new variable is treated the same as any other parameter in the discriminant analy-
sis procedure. 

15.5 STATISTICAL PATTERN CLASSIFICATION 

Many of the methods we have used earlier in the book fall under the category of sta-
tistical pattern recognition. For example, the backpropagation model is essentially a 
statistically based method. Obviously, Fisher's Linear Discriminant and discriminant 
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analysis in general are methods of statistical pattern classification, as are all the other 
supervised and unsupervised learning approaches discussed in this chapter. Patrick and 
Fattu (1986) present an interesting extension to techniques for statistical pattern clas-
sification with the introduction of complex classes. In this approach, a feature vector 
can belong to more than one category. The general idea is the following. Assume that 
there is a set C of primitive classes that contains m classes: 

C: o>i, . . . ,<am 

Categories ω,* are then developed using these primitive classes: 

ω;* = α>! ω2 ω3. . .o)m (only class 1) (15.59) 

ω,* = ωχ ω2 ω3. . .o)m (only class m) 

ii*ebC = o)ao)t,o)c. . . n (15.60) 

where n indicates all class complements not to the left of n. 
ü,*abc denotes a complex class. In general, a complex class Ω*ε is defined as: 

Ω*ε: Set containing classes ωε1, ωε2, ■ ■ . 

A posteriori class probability can then be extended by Patrick's theorem (Patrick and 
Fattu, 1986): 

ρ(ω,·|χ) = b(*k*) + Σρ(χ|η*«)ρ(Π*.)]/ρ(«),/ = 1,2, . · . ,m (15.61) 

Patrick et al. have developed the CONSULT system which has been applied to nu-
merous applications in medical decision making using pattern classification (Patrick, 
1994). 

15.6 UNSUPERVISED LEARNING 

Some statistical approaches to unsupervised learning were introduced in Chapter 5; 
additional methods are presented here. 

15.6.1 Parzen Windows 

The Parzen window approach is similar in some ways to the potential function 
approach discussed in Chapter 4. The objective is to compute the probability of a sam-
ple falling within a specified area, or window: 

pn(x) = (kn/n)/Vn (15.62) 

where kn is the number of samples in the cf-dimensional hypercube rn whose volume is 

v„ = hn
d (15.63) 

where hn is the length of a side. 
The window function <j>(u) is defined by: 

Φ(η) = 
1 if |My|< 0.5,/ = 1, ■ · · ,d ( 1 5 6 4 ) 
0 otherwise 
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1 if x, falls within the hypercube 
0 otherwise (15.65) 

Thus 

φ(χ - \,)/hn = 

The number of samples kn in the hypercube is 
n 

kn = 2> (x - «iVA» (15-66) 
1 = 1 

Then 

pn(x) = (1/n) Σ (1/ν„) φ(χ - x,)//t„ (15.67) 
i= l 

The window function can be any density function such that 

φ(ι ι)>0 and (15.68) 

/ φ(ιι) du = 1 (15.69) 
The drawback of the Parzen window approach is that the data are very sensitive to the 
choice of cell size. A better approach is to let the cell volume be a function of the data, 
which is done in the kth nearest neighbor approach. 

15.6.2 Nearest Neighbor Algorithms 

In the kth nearest neighbor algorithm, the volume v„ is allowed to expand until 
it captures kn samples that are the kn nearest neighbors of x. The density of the sam-
ples determines v„. As an example, let kn = n. Then 

v„~(l/n-5)p(x) (15.70) 

Thus vn has the form Vi/ΐΐ5. 
The initial volume v is determined by the nature of the data rather than in an arbitrary 
manner. For n = 1 and kn = n 5 = 1 

Pi(x) = 1/2 |x - xj| (15.71) 

The estimation of a posteriori probabilities ρ(ω,|χ) can be done using either Parzen 
windows or the kth nearest neighbor procedure. For the Parzen window, v„ is specified 
as a function of n such as Vn5. For the kth nearest neighbor, V„ is expanded until a 
specified number of samples are captured, such as k = n5. 

15.6.3 Mixture Densities and Maximum 
Likelihood Estimates 

The mixture density approach uses the following assumptions (Duda and Hart, 
1973): 

1. The samples come from a known number of classes, c. 
2. The a priori probabilities Ρ(ω}) are known,/' = 1, . . . , c. 
3. The forms of the class-conditional probabilities p(\\o)j, θ;) are known. 
4. The c parameter vectors θ1; . . . ,6C are unknown. 
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The method is based on 
c 

ρ(χ\β) = ^ p(x\<uj, θ7·) ρ(ω;·) where (15.72) 

ρ(χ|θ) is the mixture density 
ρ(χ\ω;; θ,) are the component densities 
P((Oj) are the mixing parameters 

The objective is to estimate Θ. 
One method of finding Θ is through the use of maximum likelihood estimation. 

Assume X = {JC1; . . . , x„} is a set of unlabeled samples drawn from the mixture den-
sity. Then 

p(X\d) = Π p(xk\Q) (15.73) 
k=l 

The objective is to find θ', the value that maximizes p(X\%). This results in c equations, 
one for each parameter vector. An approximate procedure for accomplishing this is the 
Basic Isodata Algorithm described earlier. 

15.6.4 Unsupervised Bayesian Learning 

In unsupervised Bayesian learning, the following assumptions are made (Duda 
and Hart, 1973): 

1. The number of classes is known. 
2. The a priori probabilities Ρ(ω}) are known for each class. 
3. The forms of the class-conditional probabilities /?(χ|ω;, θ;) are known, but the 

parameter vector Θ is not known. 
4. Part of the knowledge about Θ is contained inp(6). 
5. The remainder of the knowledge about Θ is contained in a set X of n samples 

drawn independently from the mixture density. 

ρ(χ|β) = Σ Ρ(*\ωρ θ;) ρ(ω ;) (15·74) 

The parameter vector is learned according to the following: 

p(e\X) = p(x\e) p(e)/[f p(X\e) P(e) de] (15.75) 
Due to independence considerations: 

p(X\B) = Π p(xk\Q) (15.76) 
k=l 

If Xn represents the set of n samples: 

p(Q\X") = [p(xk\e)p(e\Xn-xWp(xk\e)p((>\Xn-1) de] (15.77) 
The samples in Eq. (15.77) are unlabeled. If the mixture density p(x\Q) is identi-

fiable, ρ(θ\Χ") can be shown to converge to a Dirac delta function centered at the true 
value of Θ. Although this procedure appears to be almost exactly the same as super-
vised Bayesian Learning, there are some significant differences. When Θ cannot be de-
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termined uniquely, the mixture cannot be decomposed into its true components. In ad-
dition, computational complexity increases with unsupervised learning. The sample 
must be assumed to be drawn from a mixture density. See Duda and Hart (1973) for a 
complete discussion of these problems. 

15.7 REGRESSION ANALYSIS 

Regression is a standard statistical technique that can be used to relate independent 
variables to a dependent variable (Afifi and Clark, 1990). The results can be used to 
produce a regression line that best fits the data. The method can be extended to non-
linear regression to produce higher order curves. The same approach can also be used 
for classification. 

A number of commercial packages, such as CART (California Statistical Soft-
ware, 1985), are available which will produce decision trees when given a data set. Fig-
ure 15.4 shows a regression tree, and Figure 15.5 a classification tree. Note that the only 
difference is in the terminal nodes. For regression, values for the dependent variable 
are generated, while for classification the class is determined. Consider the following 
example. 

The problem is to determine the presence or absence of pneumonia. The sample 
consisted of thirty-eight cases, six of which were negative. The following variables are 
used: 

WBC: White blood count 
CRP: C-reactive protein 

These measurements were repeated for each patient at five different time intervals; 
thus there were ten independent variables in all. Using the CART classification tree 
method, node 1 was split on CRP3 = 19.7. This was the only variable used. If CRP3 > 
19.7, pneumonia was assumed to be present. Terminal node information is produced by 
this method. CART output is shown in Table 15.1. 

The same problem approached by using discriminant analysis results in the fol-
lowing: 

Nijo 

Y e s / 

Class 2 

Class 2 

No 

Class 1 

Figure 15.4 Classification Tree. 
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Figure 15.5 Regression Tree. 

c(no) = -8.18 + 0.82 WBC3 + 0.25 CRP4 

c(yes) = -20.11 + 1.23*WBC3 + 0.47 CRP4 

The probability of pneumonia is then given by: 

p(pneumonia) = 1/[1 + exp(c(no)-c(yes))] 

Table 15.2 shows the classification results for the discriminant analysis. 
Several interesting points are illustrated by this example. First, note that the sam-

ples are not evenly balanced between the two classes. The pneumonia class contains 

TABLE 15.1 CART Analysis 

Terminal Node Information 

Node Cases Probability Class Cost 

4 

34 
0.1053 
0.8947 

1 0.0000 
2 0.0588 

Classification Results 

True Classification 

Predicted Classification No Pneumonia Pneumonia 

No Pneumonia 
Pneumonia 

0 

32 

Accuracy Measures 

Sensitivity 100% 
Specificity 67% 
Accuracy 95% 
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TABLE 15.2 Discriminant Analysis Classification Results 

Classification Results 

True Classification 

Predicted Classification No Pneumonia Pneumonia 

No Pneumonia 5 1 
Pneumonia 4 28 

Accuracy Measures 

Sensitivity 88% 
Specificity 83% 
Accuracy 87% 

thirty-two samples, and the no-pneumonia class contains six samples. A skewed sample 
will affect the training results in almost all classification algorithms. Note also that a 
shift in one or two samples in the no-pneumonia class greatly affects the specificity. It 
also points out one of the basic reasons for using sensitivity and specificity measures as 
well as overall accuracy. In this example, all samples in the no-pneumonia class could 
be misclassified; that is, all samples could be put into the pneumonia category, with an 
overall accuracy of 85 percent! Here is a result with fairly high accuracy that is totally 
useless! Note that in this case the discriminant analysis approach yielded a better bal-
ance between sensitivity and specificity, which is in general a desirable outcome. The 
CART approach often results in an unstable system in which a small change in the data 
can produce a totally different decision tree. 

15.8 BIOMEDICAL APPLICATIONS 

Uses of statistical approaches abound in all fields. Commonly used methods include 
discriminant analysis and regression. A recent article (Raymond et al., 1997) compares 
methods of analysis for heart rate variability for the detection of mild hypertension. 
Up to six features are used; they are derived from both the spectral domain and the 
time domain. The best performance of 90 percent accuracy was obtained using a near-
est neighbor classifier with the Euclidean distance. The corresponding Bayes' classifier 
had 84 percent accuracy. It should be noted that the sample size was small and each 
method was evaluated by the "leave one sample out" method. For a sample size of n, 
the training is done with n — 1 samples, and the remaining sample is then classified and 
checked for accuracy. The method is repeated until all samples have been used as the 
test. In general, this method will produce higher accuracy than dividing the data into a 
training set and a test set. 

15.9 SUMMARY 

Probabilistic approaches can be used for both supervised and unsupervised learning 
problems. These methods have strong theoretical bases. However, in the theoretical de-
velopment certain assumptions are made, such as independence of variables. When 
considering probabilistic approaches, care must be taken to determine if these as-
sumptions hold for your data set. Because many commercial packages are available for 
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many of the techniques described in this chapter, they offer a good means for compar-
ison with newer, less well-tested approaches such as neural networks. 

EXERCISES 

1. For a two-class problem, the following is known. The a priori probabilities are Ρ(ωι) = 
0.4, Ρ(ω2) = 0.6. The risk values to be used are: 

XfciK) = 0.0 
λ(α2|ωι) = 0.0 
λ ^ Ι ω ζ ) = 0.9 
λ(α2|ωι) = 1.1 

(a) Set up the Bayes' Risk i?(a,|x), i = 1,2 in terms of the class-conditional probabili-
ties /?(χ|ω,·). 

(b) If it is known that ρ(χ|α>ι) = 0.4, and ρ(χ\<ύ2) = 0.6, what classification should be 
made for sample x? 

2. For the Poisson distribution 

p(x\Q) = θ* εχρ( -θ) 

find Θ by the maximum likelihood procedure. 
3. The recursive approach to Bayes' Learning is represented by 

p(e\2T) = \p(xk\e)p(e\X"-1)][\p(xk\Q)P(Q\r'-1)de] 

Explain the meaning of each variable in this equation. 
4. Given the feature vectors 

Z1 = {(2,1),(1,4)} (class 1) 
Z2 = {(-1,-1), (-3,-1)} (class 2) 
* 3 = {(l,-5),(2,-3)} (class 3) 

(a) Compute the mean for each class. 
(b) Using the mean as the prototype, classify the sample (1, -1) by the nearest neigh-

bor algorithm using the following three metrics: 
i. Euclidean 
ii. City-block 
iii. Maximum coordinate 

5. (a) What is the objective of the Parzen window technique? 
(b) What are the restrictions on the function that can be used for φ(«)? 
(c) If Φ(Μ) = (l/(27r)1^exp(-l/2 w2), what is the interpretation of <j>[(x - *,·)/*„]? 
(d) In the formula p(x) = [k/n]/V, how should k compare to n? 

6. For the decision tree in Figure 15.2, show how the cumulative probabilities are calcu-
lated. Using the information in this tree, what decision would you make regarding vac-
cination for hepatitis? Do you think other factors should be considered? If so, how 
would these be incorporated into the decision tree structure? 
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Fuzzy Systems 

16.1 INTRODUCTION 

This chapter presents an overview of fuzzy techniques as they are used in neural net-
works and expert systems, with the goal of acquainting the reader with the broad range 
of tools that are available. The field of fuzzy logic is very well developed theoretically 
and has many practical applications. References are provided as a guide for those who 
wish to investigate any of these areas in depth. 

16.2 FUZZY INFORMATION 

We begin this chapter with a short overview of fuzzy information with examples of its 
role in biomedical applications. 

16.2.1 Input Data 

As a starting point, most data items used for decision making are considered to 
be crisp, that is, not fuzzy. Some data items that appear to be crisp are listed here, along 
with their data types (Hudson and Cohen, 1993): 

Xi. Duration of chest pain (duration data) 
x2- Change in diastolic blood pressure (Δ data) 
x3: Number of PVCs per minute (normalized Δ data) 
x4: Pain occurring before sweating occurring before nausea (sequence 

data) 
x5: Abnormal ECG (binary data) 
x6: Type of arrhythmia (categorical data) 
JC7: Blood gas values (continuous data) 

Some of these variables can in fact be fuzzy variables. For χλ, the durat ion of chest 
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pain may be approximate; instead of reporting two hours duration, a more likely re-
sponse is "about two hours." This value can be represented as a fuzzy number, as illus-
trated above. For x2, the change in blood pressure can be interpreted as fuzzy owing to 
the approximate nature of the blood pressure reading. In this case, both readings 
would be approximate, and the difference would be computed using fuzzy subtraction. 
For details on fuzzy arithmetic, see Dubois and Prade (1980). As x3 is an actual count, 
it is inherently crisp. For x4 an algorithm for partial presence of a sequence would be 
invoked. This method will be discussed later in this section. Although *5 appears to be 
a straightforward binary variable, in fact more information is imparted by indicating 
the degree of abnormality. Instead of entering a 0 or 1, a number between 0 and 10 can 
be entered, which indicates the level of abnormality. As x6 is strictly categorical, it 
could be fuzzified only if each category were considered separately and a degree of 
membership were established for each category. In the case of x7, the blood gas levels 
can be considered fuzzy numbers because of the test's limited accuracy. 

The decision of whether these variables should be included as crisp or fuzzy de-
pends on the impact that the fuzzified version will have on the decision. This can be de-
termined experimentally by establishing different models and comparing classification 
results. The introduction of fuzzy input causes substantial problems in most neural net-
work learning algorithms. 

16.2.2 Fuzzy Logic and Fuzzy Set Theory 

Fuzzy set theory was introduced by Zadeh in the mid-1960's (Zadeh, 1965). The 
basic concept is that propositions are not necessarily true or false but rather have a de-
gree to which they are true, represented by a number between 0 and 1, inclusive. Tra-
ditional propositional binary logic is replaced by new mathematical concepts that per-
mit conjunctions, disjunctions, and implications in terms of these partial truth-values. 
A component of fuzzy logic, fuzzy set theory allows partial set membership, a concept 
that is useful in classification problems. 

Since the introduction of fuzzy logic, the field has expanded enormously in terms 
of both theoretical developments and practical applications. For an overview of the 
theory behind fuzzy systems, see Kaufmann (1985) and the journal Fuzzy Sets and Sys-
tems, which contains both theory and applications. Fuzzy techniques have found their 
way into a number of commercial products, including elevators, trains, cameras, and 
rice cookers. Earlier we mentioned fuzzy biomedical applications in neural networks 
and artificial intelligence; we will present some more examples in this chapter. 

16.2.3 Representation of Fuzzy Variables 

When we discussed variable types, we briefly mentioned fuzzy variables. In gen-
eral, a fuzzy variable is represented either as a triangular or trapezoidal function, as il-
lustrated in Figure 16.1. As an illustration, consider a test result such as systolic blood 
pressure. For a patient with a reading of 117, there is a margin of error due to the mea-
sure's degree of accuracy. If it is known that the margin of error is ±3, then the true 
reading is somewhere between 114 and 120. If this information is represented as a 
triangular fuzzy number, then 117 is the most likely value and has a corresponding 
membership of 1, while the membership drops to zero the further you are from this 
value. If a trapezoidal representation is used instead, then all values between 114 and 
120 have a membership of 1, with the membership dropping to zero beyond these 
limits. 
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108 117 126 

Figure 16.1 Triangular and Trapezoidal Membership Functions for Blood Pressure 
Readings. 

16.2.4 Membership Functions 

Biomedical variables can be defined as fuzzy sets, along with membership func-
tions that indicate the degree to which an item belongs to a fuzzy set. For example, nor-
mal systolic blood pressure is a fuzzy subset of possible ranges of blood pressure. A 
particular value assumes a membership function in this fuzzy subset. A specific blood 
pressure value for a patient can be interpreted as a fuzzy number that accounts for the 
imprecision in the measurement. These concepts were illustrated in Figure O.l in the 
Overview. 

16.3 FUZZY NEURAL NETWORKS 

Medical data often defy precise interpretation because diseases come in different 
states or in combination with other diseases. It is difficult to represent multiclass mem-
bership. Patients also suffer from a particular disease to different degrees (e.g., mild, 
moderate, severe). The degree of illness can be expressed as the patient's degree of 
membership in the class representing the disease. Furthermore, one disease may cause, 
complicate, or alleviate another. The dependence between classes corresponds to the 
dependence between diseases. 

The overlapping nature of classes contributes to uncertainty. Fuzzy feature vec-
tors can simultaneously have degrees of membership in these overlapping classes, ex-
ploiting the notion of similarity to conflicting classes. Crisp partitioning fails to exploit 
this similarity. A fuzzy partition algorithm indicates high partial memberships in mul-
tiple classes. Fuzzy sets are useful during feature analysis to represent input data with 
linguistic variables rather than exact numerical definitions. Fuzzy sets are also used for 
classification to maintain partial class memberships and to estimate missing informa-
tion in terms of membership values (Ruspini, 1969). 

A traditional neuron performs a summation of weighted input values and fires if 
the summation exceeds a prespecified threshold. The fuzzy neuron is similar except 
that it can process vague information via the membership function. The inputs to the 
fuzzy neuron, fuzzy sets Xlf X2, ■ ■ , XN> are weighted differently from those in the 
nonfuzzy case. The weighted inputs are then aggregated not by summation but by the 
fuzzy aggregation operation. The fuzzy output may remain with or without further op-
erations. A number of researchers have developed approaches to fuzzy neural net-
works (Kuncicky and Kandel, 1989; Lee and Lee, 1975). 
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The difference between clustering and classification is that clustering algorithms 
label given data sets XsRP as a group, whereas a classifier can label every data point in 
the entire space as Rp. Usually, classifiers are designed with labeled data (supervised 
learning). The partitioning decision functions may be computationally explicit discrim-
inant functions, nearest prototype rules, or implicit multilayered perceptions, or k-
nearest neighbor rules. Like fuzzy clustering, fuzzy classification preserves multiclass 
membership in similar classes and typically results in a hard design. This idea can be 
attributed to embedding: finding a better solution to a crisp problem by initially look-
ing in a larger space with different constraints, thereby allowing the algorithm more 
freedom to avoid errors by making hard decisions in intermediate stages. As an exam-
ple, consider the crisp fc-nearest neighbor algorithm as opposed to the fuzzy fc-nearest 
neighbor algorithm (K-NN). Both the fuzzy and crisp algorithms search the labeled 
sample set for the Ä-nearest neighbors. Other than obtaining these K samples, the pro-
cedures differ considerably. The fuzzy K-NN algorithm assigns class membership to a 
sample vector rather than assigning the vector to a particular class. Thus the algorithm 
makes no arbitrary assignments, assigning membership as a function of the vector's dis-
tance from its fc-nearest neighbors and those neighbors' memberships in the possible 
classes. 

The following sections outline a number of approaches to this problem. These ap-
proaches fall into two main categories: introduction of a pre-processor in order to han-
dle the fuzzy input and direct modification of the learning algorithm to handle interval 
data. As a third alternative, a more radical reinterpretation of neural networks using 
an analogue model has been proposed. This model uses additional properties of bio-
logical nervous systems. 

16.4 FUZZY APPROACHES FOR SUPERVISED 
LEARNING NETWORKS 

Neural networks lend themselves well to dealing with uncertainty in that weights are 
adjusted according to input data. A number of issues arise in neural network research 
in handling uncertain or fuzzy information. These can be divided into several areas: 

Input data. 
Propagation of results through the network. 
Interpretation of final results. 

In terms of the fuzzy implementation of neural networks, none of these aspects has 
currently been totally resolved. 

16.4.1 Pre-Processing of Fuzzy Input 

In work by Sanchez (1989), a first layer to the neural network is established which 
represents linguistic information. Primary weights are in linguistic form and are inter-
preted as labels for fuzzy sets, such as decreased, normal, or increased. In addition, sec-
ondary weights in the interval [0,1] indicate the connection's degree of weakness. The 
linguistic weights are then used to produce values at the intermediate, or hidden level. 
At this level, numeric values are then used in a learning algorithm to produce the val-
ues for the third, and final, layer. 

Yager (1984) concentrates on the aggregation at each neuron and its relationship 
to fundamental ideas from fuzzy logic. Specifically, a degree of membership is associ-
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ated with the level of firing of a neuron. The process that determines the firing level of 
a neuron can be associated with the evaluation of the truth of a fuzzy proposition. This 
can be extended to define a model for competitive firing of neurons. 

In work by Gupta and Gorzalczay (1991), a fuzzy neuro-computational model is 
established in three steps: (1) quantization of the fuzzy variable spaces, definition of 
fuzzy sets, and choice of model structure; (2) derivation of rules describing the system 
behavior and application of appropriate learning technique; and (3) assessment of the 
model quality. Nonfuzzy (crisp) and fuzzy data are transferred to the perception level, 
determined by the primary fuzzy sets that are then processed by the neural network 
structure. 

16.4.2 PROPAGATION OF RESULTS 

16.4.2.1 Max-Min Networks. Saito and Mukaidono (1991) propose a max-
min algorithm to replace the traditional sum-product algorithms that are used tradi-
tionally in neural network learning algorithms. A number of self-consistent fuzzy 
systems can be designed using f-norms and ί-co-norms (Dubois and Prade, 1980). 
These are defined in Section 16.6.4.1. Thus the traditional sum-product paradigm for 
weight combination is replaced by one of these constructs. The minimum and maxi-
mum of membership functions are often used in place of AND and OR operations, 
respectively. A max-min network generally consists of a number of nodes that use 
either the min or the max operation to combine weights. The max-product net-
works are similar to the max-min networks except that the product is used in place 
of the min. 

16.4.2.2 Learning Algorithms for Interval Data. Fujioka et al. (1991) de-
scribe a learning algorithm that handles interval data. The learning algorithm maps 
interval-valued data into an interval that becomes the final result. Sums are computed 
for the lower and upper values of the input intervals. A cost function is defined. The 
objective of the learning algorithm is to minimize the cost function. The algorithm can 
handle non-interval-input in a degenerated interval with equal limits. 

In the simplest case, a fuzzy number can be represented by a membership func-
tion considered symmetric and triangle, and can thus be interpreted by the endpoints 
of the interval. Even in this case, however, the learning algorithm must be able to han-
dle interval data, which requires a major revision in most established learning algo-
rithms. 

In order to handle interval data as input, the following is proposed. For a data set 
with n variables, define a vector (Cohen and Hudson, 1992) 

χ = [(*i,yi), (*2,y2), . . . ,(xn,yn)] (I6.i) 

where (JC„ yt) represents the interval range for the rth variable. The values for (xh y,·) 
will be determined by the input data in the training set for the learning algorithm. The 
objective is to obtain a decision surface that will separate data at any point in the in-
terval. This can be accomplished if the extreme values are accommodated. In order to 
do this, all possible combinations of interval endpoints must be considered. For a data 
set with n variables, 2" combinations will be produced. A new set of In vectors is then 
defined: 

zk = [zuz2, ■ ■ · ,zn] k = l,...,2n (16.2) 
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where 2/ε (*,-,y;) $ all possible combinations of xby/j are generated for /,;'= 1, . . . ,n. 
The learning algorithm is run for each of the 2" cases. The weights attached to the de-
cision surface that produces the poorest classification are chosen in order to form a ro-
bust model (Hudson and Cohen, 1992). 

16.4.2.3 Analogue Models. Another approach suggested by Rocha, Theoto, 
and Rocha (1991) for the design of future neural network models is the introduction 
of an analogue, rather than a digital component, which would more closely represent 
the analogue nature of the neurotransmitters in actual biological nervous systems. 
Such an analogue system could directly interpret fuzzy information without progress-
ing through the digitization stage that requires some type of approximation. 

16.5 FUZZY GENERALIZATIONS OF UNSUPERVISED 
LEARNING METHODS 

A number of the methods we saw in Chapter 5 can be generalized to use fuzzy con-
cepts. 

16.5.1 Fuzzy Associative Memories 

The purpose of associative memories is to map data to data. Fuzzy association 
refers to the storage and recall of uncertain associations. Either the associations or the 
patterns, or both, can be uncertain. Traditional associative memories rely on modus po-
nens of traditional logic where the stored pair (A, B) represents A —> B. For fuzzy as-
sociative memories the approximate data item A' = A results in the recall of B' » B. 
For those who are interested in more details, Kosko (1991) analyzes a number of asso-
ciative memory structures in terms of fuzzy techniques, including BAMs, Hopfield nets, 
and the Cohen-Grossberg auto-associations, along with such topics as fuzzy cognitive 
maps. 

Carpenter and Grossberg (1996), along with other workers, have developed fuzzy 
ARTMAP algorithms that use, among other techniques, linguistic variables, in which 
the min operator defines features that are critically present, while the max operator de-
fines features that are critically absent. The min operator is translated into cells in the 
neural network which are turned on, while the max operator is represented by cells 
that are turned off. 

16.5.2 Fuzzy Clustering 

The purpose of clustering is to partition data into a number of subsets (Akay, Co-
hen, and Hudson, 1997). Within a set, the elements are as similar as possible to each 
other; elements from different sets are as different as possible. Given any finite data 
set, the purpose of clustering is to assign object labels that identify subsets within the 
given data set. Because the data are unlabeled, this problem is often called unsuper-
vised learning, that is, learning the correct labels for subsets. Fuzzy methods can be 
used for clustering in several ways (Bezdek, 1987): 

Relation Criterion Functions: Clustering controlled by an optimization of a cri-
terion function of the grouped data. 
Object Criterion Functions: Clustering controlled by an optimization of an ob-
jective function based directly on the data on an «-dimensional feature space. 
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This subdivision is the most popular with fuzzy c-means (number of classes 
known a priori). 
Fuzzy Isodata: Iterative, self-organizing data analysis techniques, number of 
classes unknown. 
Convex Decomposition: Decomposing a set of fuzzy clusters into a combination 
of convex sets. 
Numerical Transitive: Extracting crisp equivalence relations from fuzzy similar-
ity relations. 
Generalized Nearest Neighbor Rules (Keller, Gray, and Givens, 1985): Degree of 
cluster membership based on metrics. 

An example is the following algorithm for hard/fuzzy c-means clustering 
(HCM/FCM) (see Bezdek, 1981): 

HCM/FCM Clustering Algorithm 
Given an unlabeled data set X = {xlt . . . ,XrJ,fix c (number of clusters), T, || || A 
and ε > 0. 
Initialize 

U0 ε Mfcn. Choose m a l Compute weight vectors 

Γ n 

Vi = X uik xk / X u^ 
_k=i 

for i = 1,2, . . . ,c (16.3) 

where: m ε [1, °°): constrained fuzzy partitioning ofX 
v = (vj, . . . , vc):c vector prototypes in Rp 

A: any positive definite (s x s) matrix 
For t = 1,2, . . . ,T 

Compute all en fuzzy memberships {uiktJ by one of the following 
7/HCM 

uik = \1 llxk - vt||A < I k - Vj||A, j = 1, ■ ■ ■ ,c, j #i (16.4) 
0 otherwise 

IfFCM 

Uik = / Σ / Κ - vJHk - VJHA/21"1-7;-^ < i ^ c, i < k < n (16.5) 

Update all c weight vectors using (16.3). 
c 

Compute E, = ||vt+7 - vt|| = X ||vi>t+2 - vijt|| (16.6) 

7/Et s ε, stop; else next t. 

16.6 REASONING WITH UNCERTAIN INFORMATION 

As we saw in Chapter 9, the need to deal with uncertain information was recognized in 
the earliest medical expert systems and was generally dealt with through the use of cer-
tainty factors. Since that time, more sophisticated techniques taken from a number of 
theoretical concepts have been employed. There are numerous examples of expert sys-
tems that utilize fuzzy techniques (Adlassnig, 1982; Esogbue, 1983; Gupta and Gorzal-
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czay, 1985; Kandel and Langholz, 1991; Cohen and Hudson, 1995). In the following sec-
tions, we look at different aspects of uncertainty in knowledge-based systems. 

16.6.1 Uncertainty in Input Data 

16.6.1.1 Degree of Presence Input. Although the above procedure utilizes 
fuzzy matching for words and phrases, the effect on the invocation of rules is still bi-
nary: either an antecedent is substantiated or it is not. A simple modification to this 
procedure is to allow a degree of presence to be entered instead of a yes/no/? response. 
Thus the questioning mode will change to 

Questioning Mode 

Blood pressure low? 8 
Syncope? 3 
Abnormal mental status? 9 

and the data-driven mode will change to: 

Data-Driven Mode 
Enter any clinical findings followed by a value between 0 and 10 indicating degree 
of presence. 

Low blood pressure 8 
Abnormal mental state 9 

The values are normalized by dividing by 10. Note that the entry of these numbers does 
not change the word and phrase matching described earlier but does affect the opera-
tion of the inference engine to be discussed later in this chapter. 

16.6.1.2 Linguistic Input. Another possibility for user input is to present the 
questions in the following format: 

Question Mode 
Indicate the range of symptoms according to the following (low, medium, high), or 
(normal, abnormal) 

Blood pressure: low 
Mental status: abnormal 

The first entry requires numeric interpretation that is most easily done by predefined 
membership functions as shown in Figure 0.2 of the Overview. The inference engine 
interprets the value obtained in the same manner as the values entered in the previous 
section. The second entry is treated simply as binary input. 

16.6.2 Uncertainty in Knowledge Base 

The knowledge base itself traditionally contains production rules in the format il-
lustrated above: 

IF ALL OF 
Antecedent 1 
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Antecedent n 
THEN Conclusion 

This structure can be altered by the introduction of linguistic quantifiers that were first 
presented by Zadeh (1978). There are two types of linguistic quantifiers: Kind 1 and 
Kind 2. Kind 1 quantifiers, or absolute quantifiers, represent a specified amount, such 
as about three, at least four, or all. Kind 2 quantifiers, or relative quantifiers, represent 
an approximate amount, such as most or some. An absolute quantifier can be ex-
pressed as a fuzzy subset of nonnegative real numbers, whereas a relative quantifier 
can be expressed as a fuzzy subset of the unit interval. 

Using Kind 1 quantifiers, we can change the rule structure to: 

IF At least m of 
Antecedent 1 

Antecedent n 
THEN Conclusion 

where 1 < m ^ n. 
Use of this type of quantifier results in minor modifications to the inference engine. If 
Kind 2 quantifiers are used: 

IF Most of 
Antecedent 1 

Antecedent n 
THEN Conclusion 

then more major modifications are required. 
Further modifications to the rule base include the possibility that the antece-

dents do not contribute equally (i.e., quantifiers are associated with each antece-
dent) and that each antecedent may be partially substantiated. Incorporation of this 
type of knowledge base is discussed below under other approximate reasoning tech-
niques. 

16.6.3 Inference Engines for Uncertain Information 

The heart of the decision process in knowledge-based system is the inference en-
gine. Although rule searching may be done by a number of strategies, a particular rule 
is confirmed by matching the premises with case information. 

16.6.3.1 Binary Logic Engines. Traditional rule-based systems used binary 
logic inference engines with rules that were only conjunctions. Thus each antecedent 
had to be substantiated for the rule to fire. The original EMERGE system modified 
this structure to permit the inclusion of a subset of Kind 1 quantifiers represented by 
"at least m of" where 0 :£ m < n, where n was the number of antecedents. Thus the in-
put was still binary, but different degrees of substantiation were permitted. 
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16.6.3.2 Fuzzy Logic Engines. The normal production rule format has un-
qualified antecedents. For a one-antecedent rule, 

IF (A-is Λ) THEN (Y is B) 

These statements are considered all or nothing. However, membership functions fA(x) 
and /B(X) can be defined which describe to what degree X is A and Y is B, respectively, 
at every point x and y of the universes, Ux and Uy—in other words to what degree these 
propositions are satisfied at each point. 

16.6.4 Evidential Reasoning 

Evidential reasoning implies that evidence to support a premise is aggregated by 
some method. In systems that use binary logic, a proposition is either confirmed or it 
is not, but if uncertainty is present, evidence is aggregated to support a conclusion. It 
is seldom possible to aggregate sufficient evidence to be 100 percent certain of the out-
come. Some approaches to evidence aggregation include possibility theory which uti-
lizes fuzzy techniques, probability-based techniques, and the Dempster-Shafer Belief 
Theory, which is an extension of probability theory. 

16.6.4.1 Possibility Theory. A possibility distribution can be defined by as-
signing to every element x in Ux a degree of possibility (Zadeh, 1983): 

M * ) = / A W (16.7) 
Let r(x, y) represent the strength of the implication. There are a number of possibili-
ties for the definition of r(x, y), which are described in Bouchon-Meunier (1992). An 
example is the Mamdani Implication: 

r(x,y) = min(fA(x),fB(y)) (16.8) 

As an example, consider the rule 

IF (blood pressure is low) THEN (shock is present) 
fA(x) and /s(y) must be defined. The respective universes of discourse are the range of 
all possible values, Ux = [0,300], Uy — [0,1], where 0 indicates absent and 1 indicates 
present. 

In order to implement a reasoning process, these rules must be combined with 
data to produce conclusions. In ordinary binary logic, modus ponens is used for this 
purpose. Again, several possibilities have been proposed for a fuzzy modus ponens 
(Bouchon-Meunier, 1992). Assume the actual data for the above rule is 

XisA'. 

Define an operation T such that 

gB. (y) = max (T(gA. (x),r(x, y))). (16.9) 

where gA· (x) and gB- (x) are membership functions. Usually, T is a ί-norm (Kosko, 
1986), which is a function satisfying the following properties: 

T(x, l) = x (Boundary) (16.10) 

T(x, y) = T(y, x) (Symmetry) (16.11) 
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T(x,z) =£ T(y,z) if x^y (Monotonicity) (16.12) 

T(x, T(y, z)) = T(T(x, y), z) (Associativity) (16.13) 

The most common choice for a ί-norm is the minimum. T must be chosen in conjunc-
tion with r(x, y) to preserve the conclusion when the observation is identical with the 
premise. 

Usually, production rules have multiple antecedents and take the form 

IF {Vx is Ax) and (V2 is A2) . . . and (V„ is An), THEN U is B (Yager, 1984). 

The possibility distribution discussed earlier can be generalized to 
σ ν ι ,ν2 , . . . , ϊ „ , ι ι ο η · ^ 1 · ^ ^ 2 · · -,ΧηΧΥ 

such that 

ffv!, V2. . · . ,v„.« = 1 Λ (1 - Afa) Λ A2(x2) . . .ΛΑη(χη) + B(y)) (16.14) 

where πέ(χ) = At{x) are the individual possibility measures and Λ is the min operator. 
For example, 

IF (BP < 100/60), THEN (shock is present) 
must be separated into the components 

IF (Systolic BP < 100) AND (Diastolic BP < 60) 
THEN (shock is present) 
or alternately 

IF (Systolic BP is low) AND (Diastolic BP is low) 
THEN (shock is present) 

16.6.4.2 Probabilistic Approaches. Many probabilistic approaches, such as 
Bayes' Theory, lend themselves to evidence aggregation. These approaches have been 
discussed in Chapter 15. We include them here to emphasize their possible uses in deal-
ing with uncertain information. 

16.6.4.3 Dempster-Shafer Belief Theory. The Dempster-Shafer Theory of 
Evidence is based on set theory. A very brief description is given here. For those inter-
ested in theoretical details, refer to Shafer (1976). For applications to expert systems, 
see Buchanan and Shortliffe (1984). 

Assume that there are n possible hypotheses that are mutually exclusive and ex-
haustive. Each piece of evidence is assigned a probability called a bpa (basic probabil-
ity assumption). M(A) is the measure of the probability or belief assigned to the ele-
ment A. m(Q) is the measure of the portion of total belief that remains unassigned. A 
belief function (Bel) assigns to every subset 5 the sum of beliefs specified by a specific 
bpa, that is, for two hypotheses A, and hj (Fu, 1994): 

Bel(hh hj) = m((hi, hj)) + m(hj) + m(hj) (16.15) 

The belief interval for A is [Bel(A), 1 - Bel(Ac)] where Ac is the complement of A. 
Evidence is combined for two bpa's by 

nj] Θ m2 (S0) = Σ m^S) m2(S) (16.16) 
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where Θ is the combining operator S, n 5, = S. 
Römer and Kandel (1995) draw interesting comparisons between the Demp-

ster-Shafer theory and the use of fuzzy evidences in Bayesian systems. They apply 
these principles in medical reasoning using the concept of partial beliefs conditioned 
on fuzzy events. 

16.6.5 Compatibility Indices 

Fuzzy matching can be used as a direct means of classification (Sanchez, 1989). 
Applying this method to the heart disease example, consider the three-category prob-
lem of differentiating among normal heart function, myocardial infarction, and angina 
pectoris. Assuming four possible variables apply, we get fuzzy set descriptions summa-
rized in Table 16.1 using the variables blood pressure (BP), pulse rate (PR), white 
blood count (WBC), and postventricular contractions (PVCs). The last of these 
(PVCs) is a type of arrhythmia. The corresponding membership functions are illus-
trated in Figure 16.2 (Hudson and Cohen, 1994). 

TABLE 16.1 Ranges for Angina and MI 

BP PR WBC PVCs 

Angina Pectoris 

Myocardial Infarction 

Increased 

Decreased 

Increased 

Increased 

Normal None 

Elevated >3 

Normal 

50 100 

BP 

150 0 90 

PR 

180 10000 20000 0 3 

WBC PVC 

Angina Pectoris 

50 100 

BP 

Myocardial Infarction 

150 0 90 

PR 

180 10000 20000 0 3 

WBC PVC 

50 100 

BP 

150 90 

PR 

180 10000 

WBC 

20000 0 3 

PVC 

Figure 16.2 Membership Functions Corresponding to Table 16.1. 
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Classification of a patient case using this information can be done through use of 
compatibility indices, which are illustrated in Figure 16.3. This figure shows the match-
ing of patient data represented as a triangular fuzzy number F (heavy triangle) with a 
possible membership function M (heavy trapezoid). The complement of F is shown as 
a thin line consisting of an inverted triangle with lines on each end with a membership 
value of 1. 

The first measure is the possibility measure. It is defined as 

π(Μ, F) = Sup (M n F) (16.17) 

The second is the necessity measure: 

v(M, F) = 1 - π(Μ', F) = l - Sup(M' n F) = Inf(M u F) (16.18) 

The third is the truth-possibility index 

p(M,F) = n(r0,Tl) (16.19) 

With the fuzzy sets described here, the truth-possibility index is "around / " with the 
following holding 

v s ρ < π 

The index to be used is chosen according to optimistic or pessimistic considerations. 
These three indices yield slightly different results. It is up to the user to decide on the 
choice depending on how conservative he or she wishes to be in the matching process. 
The characterizations given here can also be weighted according to relative impor-
tance, as with the rules described above, in which case relative heights are adjusted. 

16.6.6 Approximate Reasoning 

In order to accommodate Kind 2 quantifiers, we need to change the rule struc-
ture. To use quantifiers, each proposition P in a rule is replaced with 

P: QVs are A 

or more commonly 

Q(i?Vs) are A 

where the second type of statement can be interpreted as, for example, 

Figure 16.3 Compatibility Indices (F: Fuzzy number for input data, M: Membership 
function). 
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(At least n) (important) objectives are satisfied by x 

where Q is "at least n" and R is "important." 
Again, a number of possibilities exist. In order to determine the truth-value of 

P, we consider some subset C of V such that (1) the number of elements in C satisfies 
Q, or (2) each element in C satisfies the property A. The degree to which P is satis-
fied by C will be denoted as VP(C). The overall validity is then (Hudson and Cohen, 
1988): 

V(P) = m« I W ) (16 20) 

where 2Λ is the power set of A. If Q is a Kind 1 quantifier, then 

V(P) = max[Q ( £ c,Λ ?,)Λ min a/**«'] (16.21) 
, = 1 i=l, . . . ,n 

c ε [0,1] indicates the membership status, rt the weighting factor for the fth antecedent 
that indicates its relative importance, and a, the degree of presence of the ith finding, 
entered by the user. The values for r; are determined through expert consultation or 
through use of a neural network model. For an example of an antecedent with weight-
ing factors, refer to Table 16.2. In the general case, Q may also be a Kind 2 quantifier, 
in which case the summation in Eq. (16.20) is normalized by dividing by the summa-
tion over i of the r, values. 

16.7 PRE-PROCESSING AND POST-PROCESSING USING 
FUZZY TECHNIQUES 

At the final level, a decision must be made as to whether results should be de-fuzzified. 
Depending on the algorithm employed, the de-fuzzification may have occurred at an 
earlier stage. In the case of the systems that use pre-processing of fuzzy information, 
the result will in general be de-fuzzified. In systems that use learning algorithms for in-
terval data, the final result will in general be an interval that must be properly inter-
preted according to the application. Some neural network learning algorithms provide 
a classification as well as a degree of membership in that classification. 

Another approach (Yager, 1991) concentrates on the aggregation at each neuron 
and its relationship to fundamental ideas from fuzzy logic. Specifically, a degree of 

TABLE 16.2 Sample Antecedent with Weights and Degree 
of Presence 

Symptom 

Low blood pressure 
Abnormal mental status 
Cold, clammy skin 
Gray, cyanotic skin 
Weak peripheral pulses 
Low urinary output 

Degree 1 of Presence 

0.8 

0.9 

1.0 

0.3 

0.7 

0.6 

Weighting Factor 

0.5 

0.1 

0.1 

0.1 

0.1 

0.1 
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membership is associated with the level of firing of a neuron. The process that deter-
mines the firing level of a neuron can be associated with evaluation of the truth of a 
fuzzy proposition. This can be extended to define a model for competitive firing of neu-
rons. 

In a more complex structure (Gupta and Gorzalczay, 1991), a fuzzy neuro-
computational model is established in three steps: (1) quantization of the fuzzy vari-
able spaces, definition of fuzzy sets, choice of model structure; (2) derivation of rules 
describing the system behavior, application of appropriate learning technique; and 
(3) assessment of the model quality. Nonfuzzy and fuzzy data are transferred to the 
perception level determined by the primary fuzzy sets that are then processed by the 
neural network structure. 

16.8 APPLICATIONS IN BIOMEDICAL ENGINEERING 

One of the common applications of fuzzy logic is in control. Many commercial prod-
ucts now use fuzzy control. The list includes elevators, cameras, washing machines, and 
even rice cookers! Fuzzy control can be used effectively in some medical devices. Po-
tential applications of fuzzy control are outlined in Rau et al. (1995). Rau et al. are de-
veloping two prototype devices using fuzzy rules. The first is for fuzzy control of a 
total artificial heart (TAH). Fuzzy rules are used to control the filling phase and the 
ejection phase of the heart. The fuzzy rule base consists of twenty-five rules. A sample 
rule is 

IF Filling is fast 
AND 
Pump rate is good 

THEN Pump rate a little faster 

These rules are represented in the form of membership functions for each premise, in 
this case filling rate and pump rate. A membership function is also used for change of 
pump rate. Inferences are made using the methods described above. Figure 16.4 shows 
these membership functions. 

The second application is the establishment of intelligent alarms for use in car-
dioanesthesia. The goal of this system is to monitor vital parameters such as blood 
pressure, temperature, and blood gases. The alarm sounds if the parameters are outside 
of an acceptable state, but it is up to the anesthesiologist to make the decision regard-
ing changes in treatment (Becker et al., 1997).The system is knowledge-based and uses 
a fuzzy logic process model. The knowledge base was designed in consultation with a 
cardiac anesthesiologist. The patient's vital parameters are gathered from conventional 
monitoring devices and information systems and are then evaluated using fuzzy logic. 
A sample rule in the system is: 

If "APsys" is good and "LAP" is too high, then "preload" is too high (0.8). 

Where APsys is arterial systolic pressure, LAP is left arterial pressure, and preload is a 
state variable. Linguistic variables are used to describe input parameters. Membership 
functions are then defined for each linguistic variable. The prototype system has been 
evaluated and shows sensitivity, specificity, and predictability to be very good com-
pared to conventional systems. 
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Figure 16.4 Membership Funtions for the Fuzzy TAH Controller (Rau et al., 1995). 

16.9 SUMMARY 

Use of techniques from fuzzy logic, approximate reasoning, and evidence aggregation 
can enhance the performance of decision-support systems, especially when dealing 
with borderline cases in which nuances are important. The advantages of these meth-
ods must be balanced against the increased complexity of the reasoning process along 
with the accompanying higher computational demands. In addition, it may be more dif-
ficult to interpret the reasoning processes of these approaches. Use of fuzzy ap-
proaches in combination with other methods is discussed in Chapter 17. 

EXERCISES 

1. What are the advantages of defining input variables in terms of fuzzy numbers? What 
are the disadvantages? 

2. Give examples of test results that would best be represented by: 
Triangular fuzzy numbers 
Trapezoidal fuzzy numbers 

3. In fuzzy supervised learning algorithms, is the training time likely to be slower or faster 
than that in crisp learning algorithms? Explain. 

4. Define a problem that would best be solved using fuzzy clustering. How will the output 
differ in fuzzy clustering and crisp clustering? 
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5. Show that the minimum satisfies the four conditions of a ί-norm. Can you think of an-
other function that would satisfy these conditions? 

6. Set up an example for which you can use the concept of compatibility indices and con-
struct a figure similar to Figure 16.3. Calculate the possibility measure and the neces-
sity measure for your example. 

7. For the example in Table 16.2, compute V(P) from Eq. (16.20). 
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Hybrid Systems 

17. 1 HYBRID SYSTEMS APPROACHES 

The term hybrid system has been used to describe any decision support approach that 
includes more than one methodology. A recent edited volume by Kandel and Langholz 
(1992) contains twelve papers combining different approaches for the design of med-
ical decision aids and an additional six chapters describing applications of hybrid sys-
tems. The approaches used include knowledge-based systems, neural networks, fuzzy 
logic, learning systems, distributed systems, connectionist models, optimization, and hi-
erarchical structures. Applications include data analysis, robotic skill acquisition, med-
ical diagnosis, wastewater treatment, and scheduling of manufacturing systems. 

The objective of the hybrid system approach is to bring as many tools to bear as 
possible on the problem at hand. Traditionally, many researchers have become advo-
cates of their methodology and have sought to promote it as the preferred method. The 
hybrid system approach requires a step back from this advocacy to a more pragmatic 
approach to problem solving. A typical argument for using hybrid systems is the abil-
ity to include both expert-derived and data-derived knowledge in the same system, 
thus allowing all information to be incorporated. 

Problems that arise in hybrid systems include the combination of diverse meth-
ods in a seamless manner to provide a system that is easy to use, the development of 
interfaces so that information derived from one technique can be used by another, and 
the validation of the overall model. Since the number of possibilities for combination 
of methods is quite large, it is not possible to discuss all problems that may arise. This 
chapter summarizes some of the techniques that have been discussed earlier in this 
book, emphasizing features important for the development of hybrid systems. 

17.2 COMPONENTS OF HYBRID SYSTEMS 

The major difficulty in combining different reasoning strategies arises in the combina-
tion of knowledge-based approaches and data-based approaches, as the sources of in-
formation are completely separate. It is this combination, however, that has the most 
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to offer for the inclusion of all available information. 
Basic strategies for combining two approaches include: 

1. Using output of one method directly as input to another method. 
2. Restructuring the output of one method to produce input to another method. 
3. Running two methods independently and combining output information. 
4. Using one methodology to significantly alter the structure of another. 

The remainder of the chapter illustrates these combinations of methods. 

17.2.1 Knowledge-Based Approaches 

As we have seen in Part II of this book, a number of knowledge-based ap-
proaches have been developed. Salient attractive features of knowledge-based systems 
for the development of hybrid systems include: 

Use of expert-supplied information. 
Human-like reasoning processes. 
Ability to provide explanations of conclusions. 

Figure 17.1 shows a general system diagram for a knowledge-based system. The knowl-
edge base is developed through consultation with experts in the application domain. It 
consists of rules or other appropriate knowledge structures, along with supplementary 
information such as certainty factors. The box with the heavy border represents the ac-
tual functioning of the expert system in which the inference engine uses the case data 
to try to substantiate rules. The list of substantiated rules is created, along with com-
putation of certainty factors. The output from the system consists of the recommenda-
tions based on the substantiated rules, an explanation of the reasoning process, and 
specific information that can be recorded in the patient record. 

Major difficulties are presented in combining the knowledge-based approach 
with data-driven approaches. Next we examine four components of the system: knowl-
edge base, input, decision-making algorithm, and output. 

17.2.1.1 Knowledge Base. The knowledge structure is symbolic, with the only 
numerical component consisting of the certainty factors. The knowledge is derived 
from consultation with experts. Is there any way in which other approaches can aug-
ment this structure? 

A number of researchers have tried to generate rules automatically from accu-
mulated data rather than through consultation with experts (Cimino and Barnett, 
1993; Dzeroski and Lavrac, 1996; Yager, 1991). Techniques that can be used for auto-
matic rule generation include neural networks and genetic algorithms. (Specific tech-
niques were discussed in Chapter 11.) The advantage of automatic rule generation is 
the reduction in time required for knowledge base development as well as the ability 
to develop knowledge bases without expert input. A number of disadvantages are also 
apparent. Rules that are derived automatically will require verification, and there is no 
guarantee that they are consistent, exclusive, and/or exhaustive. A more reasonable ap-
proach appears to be the combination of expert-supplied rules with generated rules. 

A major area that can impact the structure of the knowledge base is fuzzy logic 
and fuzzy set theory. Techniques from multivalued logic permit the inclusion of more 
subtle reasoning strategies and more complex structures. They also permit the cer-
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Figure 17.1 General Structure of a Knowledge-Based System. 

tainty factor to be replaced with membership functions and degrees of substantiation 
that have stronger theoretical bases. Note that the use of fuzzy techniques does not re-
move the necessity for expert consultation and may actually increase the development 
time of knowledge bases because of the need to determine membership functions and 
rule thresholds (Hudson et al., 1992). (These techniques have been discussed in Chap-
ter 16.) These numerical items can also be obtained through use of data-based ap-
proaches such as neural networks. Automatic generation of weights, membership func-
tions, and thresholds will be discussed later in this chapter. 

17.2.1.2 Input Data. In a knowledge-based system, what form does the input 
data take? Since the goal is generally to substantiate rules, the system attempts to col-
lect information that is relevant to the premises. This can be done in a number of ways, 
depending on the user interface. The user may be asked to answer questions regarding 
the presence or absence of symptoms or previous history of disease and enter test re-
sults or other relevant data, including interpretations of medical images and ECG data. 
In traditional systems, these items are indicated as present or absent. Fuzzy techniques 
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can be applied to allow the user to respond with degrees of presence rather than with 
simple presence or absence. Test results that are entered as numeric values can be in-
terpreted as fuzzy numbers, as described in Chapter 16. 

In some hybrid system approaches, output from data-driven models can be used 
as input for knowledge-based models. As an example, a neural network model can be 
used to determine the presence or absence of a certain condition that is then used as 
one premise in a more complex rule. In addition, other automatic processing models 
can be used to generate input for knowledge-based systems. One very common nu-
merical method that is often overlooked as part of numerical processing because it has 
become so common is the output from automatic ECG processing algorithms. A re-
lated example is the processing of time series data using techniques such as chaotic 
analysis. In the next chapter, we will see an example of chaotic processing of Holter 
tapes (Cohen et al., 1994). 

17.2.1.3 Decision-Making Algorithm. As we saw in Chapter 12, traditional 
inference engines in knowledge-based systems use standard binary logic to confirm 
rules. They most often use some form of certainty factor to deal with uncertain infor-
mation in the reasoning process. In Chapter 16, we looked at ways in which fuzzy tech-
niques and other techniques in approximate reasoning can significantly expand the bi-
nary model to provide systems that indeed appear to reason in more humanistic terms. 
The combination of fuzzy logic with knowledge-based systems has been one of the ma-
jor extensions of the basic inference engine concept. An example of an expert system 
that uses approximate reasoning is given in Chapter 18. Many researchers have devel-
oped fuzzy medical expert systems that employ different methodologies (Cohen and 
Hudson, 1995; Hudson, 1991; Rocha, 1989; Sanchez, 1989). 

17.2.1.4 Output Data. What kind of output do we expect from knowledge-
based systems? For diagnostic systems, the primary goal is, of course, the diagnosis 
or perhaps a differential diagnosis. This is usually in the form of a statement of the 
probable disease, with an indication of the degree of certainty with which the system 
believes this is the actual situation, or in the case of differential diagnoses, a list of 
possibilities with allied certainty factors. Along with the outcome, an explanation of 
the reasoning that led to the conclusion is usually provided. Is it possible to use this 
information in other approaches? A simple extension would to be to include the 
outcome as a node (or for differential diagnosis multiple nodes) in a neural network 
or genetic algorithm that would then be used to generate a higher-level model. This 
approach is seldom utilized, for the diagnosis is usually the final decision. One excep-
tion would be to use this information in a model that established treatment pos-
sibilities. For differential diagnoses, this approach is potentially useful if the out-
come from the knowledge-based system can be used in a data-based model in an 
attempt to narrow the possibilities or increase the likelihood of some of the possi-
bilities. 

17.2.2 Data-Based Approaches 

Figure 17.2 shows a typical structure of a data-driven approach using a super-
vised learning algorithm. Note that our input is now entirely numeric, as is the output. 
In what ways can this information be used in knowledge-based systems? We will sum-
marize a few possibilities for several data-based approaches. 



Section 17.2 ■ Components of Hybrid Systems 265 

Learning Algorithm Classification 
Verifier 
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(Weights) 

Classification 
Results 

Figure Γ7.2 General Structure of a Supervised Learning Data-Based System. 

17.2.2.1 Neural Networks. As mentioned earlier, one problem inherent in 
the knowledge-based approach is the determination of certainty factors. This problem 
is exacerbated if approximate reasoning techniques are employed, as in addition one 
requires membership functions, antecedent weights, and rule thresholds, discussed ear-
lier in Chapters 10 and 16. The introduction of fuzzy techniques automatically com-
bines the numeric with the symbolic. Neural networks can be used to derive these val-
ues if sufficient data are available. (One method of accomplishing this is given in 
Chapter 18.) As mentioned above and described in Chapter 11, neural networks can 
also be used for automatic derivation of rules. 

Additional approaches include using the output from neural networks to feed 
into a symbolic reasoning system. For example, assume that you have a neural network 
for differential diagnosis with the structure illustrated in Figure 17.3. We will use a sim-
ple linear neural network for illustration, although the same approach can be used for 
three-layer nonlinear networks. At each of the five output nodes at level 2 in the neural 
network, a decision surface has been generated. Each decision surface may use differ-
ent input nodes with different weights to arrive at its conclusion. For each of the five 
nodes, we thus have the following information: 

Wiv ■ ■ 

Oi, · · 
A«: 

v, 
• ,Os: 

W ■ > ' f in-

Contributing input nodes to output node i 
Weights associated with each input node 
Output nodes 
Degree to which diagnosis / has been confirmed 

This information can then be fed into a symbolic reasoning layer that uses this infor-
mation along with other information solicited from the user. The symbolic layer may 
have rules of the type: 
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Figure 17.3 Combination of a Neural Network with Symbolic Reasoning. 

IF disease i is suspected 
AND symptom xt is > 100 
AND the patient has a family hx of diabetes 
THEN obtain a liver enzyme panel. 

All information except the family history was taken from the neural network model. 
Additional rules may be used to try to confirm or rule out the conditions from the 
neural network model. Another type of neural network combined with a symbolic 
layer will be shown in Chapter 18. 

17.2.2.2 Genetic Algorithms. Although the paradigm is different, input and 
output from genetic algorithms can be treated the same as input and output from 
neural networks. Genetic algorithms can also be used to generate rules automatically 
(Oliver, 1994), although little research has been done in this area. 

17.2.3 General Methodologies 

17.2.3.1 Fuzzy Logic. As we saw in Chapter 16, fuzzy logic and other tech-
niques from approximate reasoning can be used to alter the actual reasoning structure 
of decision-support systems. In knowledge-based systems, the use of approximate rea-
soning techniques alters the rule structure by permitting antecedents to contribute to 
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varying degrees and to allow more complex combinations than binary logic allows. De-
rivation of the knowledge base requires additional information regarding the relative 
importance of antecedents and the degree to which they must be substantiated. In ad-
dition, input information is altered. Rather than yes/no responses, either degrees of 
presence are entered or a linguistic quantifier is used, such as low, medium, and high, 
which is then interpreted by predefined membership functions. Thus ANDs and ORs 
are replaced by evidence aggregation and partial substantiation of rules. Because of 
the altered rule structure and input data structure, the inference engine must be totally 
replaced. Hybrid systems that use fuzzy logic thus fall into category 4 described at the 
beginning of this chapter. 

Fuzzy neural networks also fall into category 4. In general, the sum-product par-
adigm used as the basis for most neural networks is replaced by a MIN/MAX network 
that implements the idea of ANDs and ORs in the fuzzy logic concept. In addition, 
some fuzzy neural networks allow fuzzy numbers as input variables. 

17.2.3.2 Statistical Approaches. Less work has been done in the combina-
tion of decision analysis with other types of decision-support systems. Three ap-
proaches to evidential reasoning—Bayesian probability theory (Lee, 1989), fuzzy set 
theory (possibility theory) (Zadeh, 1978), and Dempster-Shafer theory (Shafer, 
1976)—exist and are discussed in detail in Chapter 16. One attempt to combine 
Bayesian inference with fuzzy evidence using the basic Dempster-Shafer logic is illus-
trated by Römer and Kandel (1995) in an application to diastolic dysfunction in con-
gestive heart failure. Symptoms are entered in linguistic terms. This approach alters the 
input to the system as well as the reasoning structure of the system. 

17.3 USE OF COMPLEX DATA STRUCTURES 

As discussed earlier, one of the outstanding problems in biomedical decision-support 
systems is the incorporation of complex data such as ECGs, EEGs, and medical images 
into the reasoning structures. Hybrid systems offer some possibilities for solving this 
problem. 

17.3.1 Time Series Data 

17.3.1.1 Automatic ECG Analyzers. For a number of years, automatic ECG 
analyzers have been available commercially. In-depth study of the techniques used is 
beyond the scope of this book, but these methods generally rely on Fourier analysis 
and pattern matching techniques. These systems have been used successfully to iden-
tify arrhythmias and to classify ECGs as normal or abnormal. The diagnostic informa-
tion obtained from these automated systems is used as input to knowledge-based sys-
tems. As an example, consider the following rule from the EMERGE system: 

Rule 10a 

IF ALL OF 
Unifocal PVCs 
Frequency > 10/min 
Not proved old 
BP < 100/60 
ANY OF 

Abnormal mental status 
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Cold, clammy skin 
Gray, cyanotic skin 
Weak peripheral pulses 
Urinary output < 30cc/hr 

THEN Patient should be admitted to CCU 

The user is asked to answer questions regarding the ECG. These answers may be ob-
tained by manual evaluation but often are obtained from the automatic ECG analysis. 
This information is exceedingly important in cardiology decision-support systems. In 
fact, in the EMERGE system, the ECG analysis consists of 40 percent of all rules 
(Hudson, 1981). As an alternative to asking the user to enter the results, the automatic 
analyzer can be used as direct input to the expert system. 

17.3.1.2 Summary Methods. Various methods of summarizing time series 
can also be used. These include chaotic analysis of times series, which has been dis-
cussed in detail in Chapter 3. The next chapter illustrates the use of chaos theory as 
part of a hybrid system. In another application, Xiao et al. (1997) describe the use of 
chaotic parameters in the analysis of EEG data. It uses a combination of frequency-
domain threshold extraction and neural network pattern recognition to detect 
40-Hz EEG bursts. The neural network is a backpropagation algorithm. The system 
was used to analyze left and right brain activity during different states that included 
quiet, subtraction trial (for logical thought), and spatial trial (for image processing). 
The fractal dimension is used as a summary measure. 

17.3.2 Image Data 

Image data remains a difficult element to include in automated decision 
processes. It is usually reduced to linguistic evaluations, such as radiograph interpreta-
tions: normal, abnormal, suggestive of pneumonia, and so on. Numerical information 
can be obtained under some circumstances. For example, for digitized images, relative 
computation of tumor size can be performed. Based on digital subtraction, other 
changes from previous images can be determined. Many technical problems remain, 
for both of these procedures require normalization of images in size and orientation, 
as well as in gray levels. Automatic edge detection and other image enhancement fea-
tures can be employed. New advances in imaging technology make three-dimensional 
imaging possible, a technique that is extremely important for treatment of tumors and 
surgical interventions. However, these techniques currently do not provide informa-
tion that is readily usable in decision-support systems. 

17.4 DESIGN METHODOLOGIES 

17.4.1 System Structure 

Figure 17.4 shows an overall diagram of a decision-support system, with the 
impact of different paradigms indicated at the point where they might affect the 
system. The structure of the system may be quite complex using one or a combina-
tion of the reasoning paradigms indicated in the center box. These paradigms may 
be supplemented by additional methods as indicated in the boxes attached with 
dotted lines. 
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Figure 17.4 General Structure of Hybrid Systems. 

17.4.2 User Interfaces 

The user interface may be used to combine various decision strategies so that the 
method of reasoning is transparent to the user. Information is solicited and then di-
rected to the appropriate algorithm. An example is shown in the next chapter in the 
combination of three reasoning strategies in the same system. 

17.4.3 Pre-Processing 

Pre-processing is often necessary with medical data, in particular nontextual data 
such as images and time series. In addition, fuzzy or linguistic variables may require 
pre-processing to become acceptable to the system. 

17.4.4 Post-Processing 

Post-processing is often used to interpret results. For example, numerical output 
from a neural network may be rephrased in linguistic terms or detailed explanations 
may be provided with knowledge-based systems. Post-processing may also involve the 
application of another paradigm, such as a neural network feeding into a symbolic an-
alyzer. Fuzzy results may need to be de-fuzzified, or numeric results may be interpreted 
in fuzzy or linguistic terms. 
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17.4.5 Presentation of Results 

Presentation of results to the user is usually a synopsis of the decision, a list of pa-
rameters that contributed to the decision, and possibly an explanation. Results may 
also be automatically added to a patient file or a database for future use. 

These components are illustrated in a specific example of a hybrid system in the 
next chapter. 

17.5 SUMMARY 

The hybrid system approach has a number of advantages. Combination of knowledge-
based and data-based methods allows all sources of information to be brought to bear 
on the problem at hand. In addition, use of other techniques, such as approximate rea-
soning and probabilistic models, can help establish more robust models for reasoning 
with uncertain information. The goal of computer-assisted decision support in bio-
medicine is to build realistic, useful models. The hybrid approach overcomes depen-
dency on one methodology and thus has a great deal to offer in the quest for an accu-
rate, realistic model. 

EXERCISES 

1. What major components present in Figure 17.1 are absent in Figure 17.2? Is it easier to 
establish a database than it is to establish a knowledge base? Explain. 

2. Re-draw Figure 17.2 for an unsupervised learning system. Does the output from this 
system differ? Can it be combined with other approaches in the same manner as the su-
pervised learning system? 

3. What are the main advantages of incorporating fuzzy logic techniques in decision-
support systems? Does the incorporation of these techniques make the system easier 
or harder to implement? Why? 

4. Draw a membership function for the low, normal, and high ranges of heart rate. Give 
an example of how these ranges could be incorporated into a rule-based expert system. 
How would the use of membership functions improve the system? Could you represent 
this same information using probability theory? Explain. 

5. Explain the conceptual difference between probability theory and fuzzy logic. Are 
these tools interchangeable? Give an example in which probability theory would be 
better suited in representing a problem than fuzzy set theory. 

6. What kind of information in a CT scan is relevant to the decision process? Is this the 
same information that would be relevant in an MRI scan? 
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HyperMerge, A Hybrid 
Expert System 

18.1 INTRODUCTION 

The hybrid system HyperMerge is a combination of the knowledge-based system 
EMERGE and the neural network model HyperNet (Cohen and Hudson, 1992a). Hy-
perMerge is illustrated here as a decision-support aid for cardiology. It deals with sev-
eral facets of heart disease, including myocardial infarction, coronary artery disease, 
and congestive heart failure. Components of the system have been discussed earlier. 
EMERGE knowledge structures were presented in Chapter 10 and approximate rea-
soning techniques in Chapter 16. HyperNet, whose algorithm uses a type of supervised 
learning, was discussed in Chapter 4. Pertinent aspects of each system are summarized 
here along with methods for building the combined hybrid system. The application of 
this hybrid system to heart disease is illustrated (Cohen and Hudson, 1995; Hudson, 
Cohen, and Deedwania, 1995). A pertinent feature of the system is the inclusion of 
summary time series information through the use of continuous chaotic modeling 
(Cohen, Hudson, and Deedwania, 1996). 

18.2 KNOWLEDGE-BASED COMPONENT 

In its current configuration, different components of the expert system can be activated 
depending on the aspects of uncertainty that are present. They fall into three categories 
(Hudson, Banda, and Blois, 1992): 

■ Crisp implementation. 
■ Partial substantiation of antecedents. 
■ Weighted antecedents and partial substantiation of rules. 

18.2.1 Crisp Implementation 

The crisp implementation allows rule antecedents in three forms: conjunctions 
(AND), disjunctions (OR), and a specified number in a list (COUNT) (Hudson and 
Estrin, 1984). These constructs are summarized in Figure 18.1. Remember that 
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IF 

THEN 

IF 

THEN 

IF 

THEN 

where 

SCj 

SCj 

Diagnosis A 

sc2 

Diagnosis B 

sc3 

Diagnosis C 

AND SC2 

Antecedent 1 
Antecedent 2 

Antecedent n 

OR 
Antecedent 1 
Antecedent 2 

Antecedent m 

sc3 COUNTi 
Antecedent 1 
Antecedent 2 

Antecedent p 

Figure 18.1 Rule Structure. 

COUNT is followed by an integer that indicates how many in the list must be sub-
stantiated. The inclusion of these three logical constructs permits the types of reason-
ing most often identified in the human thought process. The AND and OR are special 
cases of the COUNT, with AND equivalent to COUNT m, where m is the number of 
antecedents, and OR equivalent to COUNT 1 (as discussed in Chapter 10). 

When using the crisp form of the expert system, the presence of all symptoms and 
the results of all tests are considered to be all or nothing, with no degrees of severity 
indicated. Thus all operations are implemented in straightforward binary logic. The 
only uncertainty included is the presence of certainty factors associated with each rule 
that indicate the certainty that the substantiation of the rule points to the presence of 
the relevant condition. 

In reality, seldom is it acceptable to ignore degrees of presence of symptoms, for 
important nuances in the data may be lost. These nuances are more important in bor-
derline cases, the exact cases for which it is important that the expert system function 
properly. 

18.2.2 Partial Substantiation of Antecedents 

Partial substantiation of antecedents can be accomplished in a number of ways. 
The most straightforward implementation changes the user interaction with the system 
so that, instead of yes/no responses, the user responds with a degree of presence (a 
number between 0 and 10), which indicates a degree of severity. In this case, it is nec-
essary to provide some guidelines to guard against individual differences in interpre-
tation of severity. For example, the following may be used. 
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0 
1-3 
4-6 
7-9 
10 

No evidence of presence 
Moderate 
Substantial 
Extremely high 
Maximum possible 

This is still a controversial area, and no completely satisfactory solution has been 
found. However, for subjective evaluations of symptoms such as pain, no better solu-
tion has presented itself. 

Once partial presence of symptoms is allowed, the binary logic inference engine 
will no longer suffice. Each of the three conditions in Figure 18.1 must be reimple-
mented. 

For the conjunctive case 

Vx is A x AND V2 is A 2 AND . . . V„ is A n (18.1) 

A function P is defined on the set V = {Vu . . . , Vn\: 

Pv(x) = min [Afa)] ( 1 8 2 ) 
i = 1, . . . n 

where x = (xlt . . . ,x„) are the input values for the current case and A t is the value 
of the membership function for xt (degree of substantiation). Similarly, for disjunctions 

Pv(x) = max [A(*;)] ( 1 8 3) 

i = 1, . . . n \ · ) 

For the case where neither a conjunction nor a disjunction is appropriate (e.g., 
COUNT), linguistic quantifiers are used (Yager, 1984; Hudson and Cohen, 1988a). Let: 

Di(x) be the fth largest element in the set (J41(x1), . . . ,An(xn)}. 

Then for any quantifier Q 

H(x) = max [Q®*Dfr)\ (18.4) 

This definition suffices for the special cases AND and OR also. For AND, 

Qii) = 0 , i = l , . . . ,n-l (18.5) 
Q(n) = 1 

18.2.3 Weighted Antecedents and Partial Substantiation 
of Rules 

The following rule structure illustrates the combination of weighted antecedents 
along with the partial substantiation of each antecedent. The w/s must be determined 
by some means, which is discussed later. The α/s are determined by information en-
tered from the user, perhaps in conjunction with predefined membership functions 
(equivalent to Afai) described above). 

Antecedent Weighting Factor Degree of Substantiation 
IF Antecedent 1 ΗΊ «i 

Antecedent 2 w2 a2 



276 Chapter 18 ■ HyperMerge, A Hybrid Expert System 

Antecedent n wn an 

THEN Conclusion (If 5 > Threshold) 

In order to determine 5, the degree of substantiation, let ß be a Kind 1 linguistic 
quantifier (such as all, most, and some), replacing the statement "QVs are A" with 

QiiCfcVsJareA (18.6) 

The quantifier Q in this case replaces traditional binary logic operations, such as AND, 
OR, or more generally, m out of n conditions required for substantiation. The truth of 
the proposition is then determined by assuming there exists some subset C of V such 
that (1) the number of elements in C satisfies Q; or (2) each element in C satisfies the 
property A. The degree S to which P is satisfied by C is given by 

S = max {Vp(c)} ^ g ^ 

where 

VP{c) = max [(Q £ c,Λ w,) * min (α, «ΛΜ"')] η s ΛΛ 

i = l , . . . , n ( 1 8 - 8 ) 

where Λ indicates minimum, a, and d, are the weighting factor and degree of substan-
tiation, respectively, of the /th antecedent, and n is the number of antecedents. 

18.2.4 Handling of Temporal Data 

Temporal data are difficult to handle in knowledge-based systems. In general, 
temporal information is treated in special rules. For example, an antecedent of one rule 
in the chest pain rule base is "Duration of pain." The consequent of the rule is depen-
dent on this temporal information. Usually, temporal reasoning is incorporated by 
adding specific rules to the knowledge base that may be purely temporal or may com-
bine temporal and other data items. 

18.3 NEURAL NETWORK COMPONENT 

18.3.1 Learning Algorithm 

The neural network component, HyperNet, has been discussed in Chapter 4 as a 
supervised learning system (Cohen and Hudson, 1992a; Hudson, Cohen, and Ander-
son, 1991). As we saw earlier, the basis of the technique is generalized vector spaces 
that permit the development of multidimensional nonlinear decision surfaces. As we 
saw in Chapter 4, the general form of the decision function is 

n n n 

D,(x) = £ MW + £ Σ wyxixj (18.9) 
i=l i= ly= l 

where n is the number of input nodes. This is the simplest nonlinear case; higher order 
equations can also be generated. 
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18.3.2 Special Data Types 

18.3.2.1 Temporal Data. These data types can be handled in a straightfor-
ward manner, according to the following schemes (Hudson and Cohen, 1993a). Let 
n(ti) be the value of the nth variable at time i„ and let 

An = nit,) - niu-i) (18.10) 

At = (r, - ί,_0 (18.11) 

Assign a new node in the network for Δ data such that 

Pn = Δ« (18.12) 

The original network is then expanded by the number of nodes required to accommo-
date the items for which the change is important. For normalized Δ data, follow the 
same procedure as before, except let 

qn = An/At (18.13) 

Duration data can also be handled simply, by establishing 

rn = Δί (18.14) 

The most difficult type of temporal data to handle is sequence data because a 
new variable cannot be created to deal with this entity. A major modification must be 
made to the neural network structure for accommodating this type of reasoning. These 
data are handled by embedding a procedure at each sequence node. To analyze for the 
presence of a sequence, let sb i = 1, . . . , k be the ith symptom out of k and let i, be 
the ith time interval. Define the matrix 

S = [ay] where 

1 if event s, occurred at time fy (18.15) 
0 otherwise 

Then tr [S] = k if the proper time sequence occurred, where tr [S] is the trace of the 
matrix S. There are two options for determining the value of node u: 

u = 
1 if tr[S] = k ( 1 8 1 6 ) 
0 otherwise 

or u= [\x[S\\lk (18.17) 

These choices will be discussed later with respect to fuzzy data. 

18.3.2.2 Crisp versus Fuzzy Temporal Data. For the first three temporal data 
types, there are two parameters that may assume fuzzy rather than crisp values: the 
time-dependent finding η(ί,) and the time interval itself *,·. The n(f,)'s can be of four 
types: binary, categorical, integer, or continuous. For these types of temporal data, the 
values themselves are not important; only the differences in the values are significant. 
(If the value itself is important, it is included as a separate node in the network.) Thus 
the generalization of the difference operation is required. The most straightforward 
generalization appears to be extended subtraction for fuzzy sets defined in Dubois and 
Prade (1980). According to the algorithm established by Dubois and Prade, this oper-
ation can be applied to continuous variables, with a simpler, direct computation possi-
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ble for the discrete case. If the data itself is binary or categorical, these variables can 
first be fuzzified, if appropriate. In the case of normalized data, the extended division, 
also discussed in Dubois and Prade (1980), can be applied. It can be shown that if M 
and N are fuzzy numbers, then 

ΜΘΝ = M® (-N) (subtraction) 

is also a fuzzy number, where M @ N is extended addition, as well as 

M0N = M® (N_1) (division) 

(18.18) 

(18.19) 

where M <8> N is extended multiplication. 
For the sequence data, the occurrence of a sequence in the correct order is a crisp 

result. However, the degree to which the sequence occurred in the correct order can 
be considered. Instead of setting node un as in Eq. (18.16), Eq. (18.17) is used. This 
definition provides a degree to which the sequence occurred in the required order. For 
example, consider the k X k matrix S: 

1 
0 
0 
0 

0 
0 
1 
0 

0 
1 
0 
0 

0 
0 
0 
1 

. . .0 

. . .0 

. . .0 

. . .0 

0 0 0 0 . . .1 

(18.20) 

Then un = (k - 2)/k, the degree to which the required sequence was met. Each row in 
this matrix represents a point in time, and each column represents a symptom. 5i; = 1 
if at time i symptom ;' is present. 

18.3.2.3 Time Series Data. Time series can be incorporated into the neural 
network if a summary measure can be found that allows it to be represented in nu-
merical terms. A number of methods exist for quantifying the degree of chaos in the 
system, including the fractal dimension and the Lyapunov exponent. The method used 
here is the central tendency measure of the second-order difference plots derived from 
a continuous approach to chaotic modeling of nonlinear systems. 

18.4 ANALYSIS OF TIME SERIES DATA 

18.4.1 Chaos Theory 

The basic common thread in chaos theory is the recursive evaluation of seem-
ingly simple functions that produce unexpectedly complex results. An iterative func-
tion does not suddenly become chaotic, but rather goes from the stage of convergence 
to a single value to a bifurcation, or convergence to two values. Additional bifurcations 
occur, and finally chaos results. 

The logistic equation is one of the best known chaotic functions: 

an = A a„_i(l - an-x) 2<A<A (18.21) 

where A is a constant whose value changes the behavior of the function. The recursion 
is dependent on the selection of a0, which must be chosen between 0 and 1. For in-
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creasing values of A, the equation progresses from single-value convergence to chaos. 
Within the chaotic area, regions of stability unexpectedly appear. It has been shown 
(Cohen et al., 1994) that these regions of stability are only a matter of perception when 
discrete values of n are considered. They do not exist if continuous values are taken. 
For integer values of n, this function exhibits chaotic properties for A > 3.57. These 
properties include apparent lack of periodicity and sensitivity to initial conditions. 

Many processes in medicine appear to exhibit chaotic properties. These analyses 
have become increasingly useful, especially in cardiology (Goldberger and West, 1987; 
Goldberger, 1989). Chaotic analysis is still in its infancy, with new techniques needed 
to determine the degree to which a data set appears to be chaotic. 

18.4.2 Continuous versus Discrete Chaotic Modeling 

In the traditional approach to chaotic modeling, a recurrence relation is estab-
lished which is evaluated at integer values, generally with each integer corresponding 
to a fixed time interval. These values are then plotted and connected with straight lines. 
However, the actual noninteger values of these recurrence relations are unknown. We 
have developed an approach (Cohen, Hudson, and Deedwania, 1996) which permits an 
approximate solution of the logistic equation not only for integer values but also for 
all real values of n and for any value of A in the important range 2 ^ A < 4 . 

These results show that the chaotic behavior of the logistic function is not ap-
parent when viewed as a continuous, and not as a discrete, model, except in the narrow 
mathematical definition. This work emphasizes the danger of approximating any con-
tinuous process by a discrete model when the underlying principles are not understood 
(Cohen, Hudson, and Anderson, 1992b). 

In Eq. (18.21), only integer values are considered. The exact solution of Eq. 
(18.21) presents a different picture. In order to get a perspective on the behavior of 
chaotic systems, we first examine the exact solution of the logistic equation at A = 4. 
The solution is 

an = 1/2 [1 - T2n(l - 2a0)] (18.22) 

where T„(x) is the Chebyshev function (Szego, 1939). 
This solution has a number of interesting properties which emphasize that it is in-

deed a well-behaved function (Cohen et al., 1994). We have found that it is indeed or-
thogonal, satisfying the relation: 

f1 /«(«o) /m(flo) k) (1 - a0)] ~1/2da0 = ■ 

where 

, w for / = 1,2,3, . . . 
/„(α0) = Τ ™ 1 - η = 1 , 2 , 3 , . . . 

1 za"+1 m = 1,2,3. . . 

(40! 
where 

(c) \c (c + 1). . .(c + k-l),k>l 
w Ll k = 0 

0 n Φ m 
B n — m 

(18.23) 
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Note that B reduces to π for / = 1, an interesting special case. 
The solution given in Eq. (18.23) is valid only for A = 4, a point in the region of 

chaos. As no exact solution is available for other values within the region of chaos, we 
constructed a method for approximating solutions for any value of A, 2 < A s 4. 

Assume a solution of the type 

an = Σ «Λ(2"*) (18.24) 

where Tk(x) is the Chebyshev function of the first kind and n is a real number. We as-
sume / to be the number of points in the interval 0 s n < 1, Thus 

an
2 = Σ ak

2Tk\2
nx) + 2 Χαί·α/Τ,·(2"χ)Γ/.(2"χ) (18.25) 

k=0 j>i 
1=0,1, . . . ,1-1 
/'=1,2, . . . ,1 

In the conjecture, progression from one point to another implies adding a Chebyshev 
polynomial. Hence 

a„+i = Σ ßkTk(2"x) (18.26) 

where n is assumed to be a real number. 
Feeding (18.24), (18.25), and (18.26) in the logistic equation (18.21) and simplify-

ing and comparing coefficients give nonlinear equations involving the unknowns a,'s 
and ß/s and the arguments x of the Chebyshev polynomials. We have solved 300 equa-
tions involving 300 variables and have chosen the appropriate c*,'s and ß/s and the ar-
gument of the Chebyshev to satisfy an to be strictly monotonic increasing in the inter-
val 0 =£ n ^ 1. It should be pointed out that the nonlinear equations give a multitude 
of solutions. By imposing appropriate boundary conditions, one obtains a unique solu-
tion to these nonlinear equations involving 300 variables. Values for n > 1 are obtained 
by applying the logistic equation to the points obtained for 0 s n < 1. 

This theoretical result is used to generate a new type of difference graph that can 
be used in analysis of time series data. 

18.4.3 Difference Equations and Graphs 

Chaotic equations are sometimes used to generate graphs that are known as 
Poincare plots. Using the logistic equation (18.22), we obtain a Poincare plot by plot-
ting α„+ι versus a„. The resulting plot is a measure of the degree of chaos in the sys-
tem. We produced similar graphs using the continuous solution (Cohen, Hudson, and 
Anderson, 1993a). Figure 18.2 shows two discrete Poincare plots, at A = 3.5 and A = 
4.0. Figure 18.3 shows the continuous Poincare plot for the same two values. Note that 
the character of these plots is totally different. 

Another useful graph for practical applications is the second-order difference: 
(an+2 - an+1) vs. (an+1 - a„).This method produces plots that are centered around the 
origin and is useful in modeling dynamic biological parameters, such as hemodynamic 
flow and heart rate variations. The difference approach appears to give a more robust 
picture of the problem and fits well within our theoretical results of the continuous 
logistic equation (Cohen, Hudson, and Anderson, 1993b). Examples for A = 3.75 and 
A = 4.0 are shown in Figure 18.4. 
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Figure 18.2 Discrete Poincare Plots, A = 3.5 and A = 4.0. 

18.4.4 Central Tendency Measure 

Although the second-order difference plots provide a useful graphical display of 
the distribution of the time series, in order to use this information for inclusion in a 
neural network model, it must be quantified. One method of numerically describing 
the data distribution is through the use of the central tendency measure (CTM), com-
puted by selecting a circular region around the origin of radius r, counting the number 
of points that fall within the radius, and dividing by the total number of points. Let t = 
total number of points, and r = radius of central area. Then 

■t-2 

iHdd 'it - 2) (18.27) 

where 

m) = 1 if [(ai+2 - ai+1)
2+(ai+1 - a,·)2]'5 < r 

0 otherwise 

The node value n will thus be a number between 0 and 1, inclusive, and can be added 
to the network like any other node. 

Figure 18.3 Continuous Poincaro Plots, A = 3.5 and A = 4.0. 
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Figure 18.4 Second-Order Difference Plot, A = 3.75 and A = 4.0, 
x = α,ι+ι _ a„,y = e„+2 - fl„+i. 

18.5 COMBINED SYSTEM 

The techniques described earlier are combined in a number of ways that address some 
of the shortcomings of each system in isolation. 

18.5.1 Weighting of Antecedents 

First, the neural network structure can be run independently for each rule to de-
termine the appropriate weighting of antecedents. In the simplest approximation, a hy-
perplane is obtained from Eq. (18.9), generating an equation of the form 

A<x) = Σ w*t (18·28) 
i=l 

The weight a, for the ith antecedent is then determined by 

a, = £ Wi (18.29) 
/= i 

Note that these weights are normalized to sum to 1. 

18.5.2 Determination of Thresholds 

In addition, the neural network can be used to determine appropriate threshold 
levels for each rule (Hudson and Cohen, 1993b). The maximum and minimum values 
for the decision surface D(x) must be determined. Let A,: = {mi, . . . , mk} denote the 
set of all values which JC, can assume, where m, > 0 for all i. Then to obtain the maxi-
mum value Dmax (x): 

If Wi > 0, let x- = max [A,] (18.30) 
If Wi < 0, let x/ = 0 for all i = 1, . . . ,n 

Then 
m m m 

ö m a x ( x ) = Σ W.-V + Σ Σ ™ί,^Χΐ ( 1 8 · 3 1 ) 
i=l i=l ;=1 
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Similarly, Dm i n (x) is obtained by the following: 

If wi > 0, let x/ = 0 (18.32) 
If Wi < 0, let *,·' = minfAi] 

and by application of Eq. (18.31) for £>„„„ (x). 
All decisions are then normalized by 

£>(x)/£>max(x) i f D ( x ) > 0 (class 1) 
D„(x)= D(x)/|£>min(;t)| i f D ( x ) < 0 (class 2) (18.33) 

0 if £>(x) = 0 (indeterminate) 

The result is a value between - 1 and 1, inclusive, which gives a degree of membership 
in that category. The values are then shifted to give an answer between 0 and 1, inclu-
sive by 

V(x) = [1 + D„(x)]/2 (18.34) 

18.5.3 Neural Network with Symbolic Layer 

The nonlinear decision function produces a normalized numerical value between 
0 and 1, inclusive (Hudson and Cohen, 1993c). A separate decision function D,(x) is at-
tached to each output node. A threshold value T,(x) (or values) is also attached to each 
level three node. If the value of the decision function exceeds the corresponding 
threshold value, a certain symbol is produced; if it does not, a different symbol is pro-
duced. This process can be extended by expanding the number of threshold values to 
produce as many symbols as desired. An additional layer is added to the network that 
combines the symbols generated by adjacent nodes according to a well-structured 
grammar. A grammar provides the rules by which a symbol can be combined. The fol-
lowing notation is used. A grammar G is defined by (Vm V0 P, S), where Vn are the 
variables, Vt are the terminals, P are productions, and S is the start symbol. A simple 
grammar would be 

Vn = {S} 
Vt = {0,1} (18.35) 
P = [S-+0S1,S-*01] 

The result of this grammar is to produce the sequence 0"1". 

EXAMPLE: Combined System 
Consider a medical application in which it is necessary to choose among three conditions. 

It is possible that none, one, or a combination of two or more conditions is present. A neural 
network is set up to learn using data of known classification, determining which variables are 
pertinent to making the decision and the appropriate weighting factors for each of these vari-
ables (Hudson and Cohen, 1993c). The decision algorithm is represented by a three-layered net-
work: input, intermediate, and output. The output level is the decision level. In traditional neural 
networks, this would be the final level. In the combined system described here, the output from 
this level is used to produce an additional level, denoted the action level. In the case of medical 
decision making, level n — 1 would determine which condition or conditions are present, and 
level n would determine what treatment or followup testing should be done based on these re-
sults. This network structure is shown in Figure 18.5. Table 18.1 shows a sample grammar. A pos-
sible interpretation is the following. Each node has a potential excitatory action (represented by 
a) or inhibitory action (represented by b). This is determined by threshold values: If Dt{x) > Tb 
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Figure 18.5 Neural Network with Symbolic Layer. 

then "a" else "b." In the grammar, each node is numbered Nt. A response of "a" at node i indi-
cates that condition C, is present. To simplify the grammar, a sequential evaluation of nodes is 
assumed. If random evaluation is done, additional entries in the grammar are required. 
For the example, four possible actions are assumed: 

rx: No action 
r2: Re-do test 
r3: Do additional tests 
r4: Begin treatment 

18.6 APPLICATION: DIAGNOSIS OF HEART DISEASE 

18.6.1 Categories of Heart Disease 

These methods are illustrated in a decision-support system for analysis of chest 
pain in the emergency room. When a patient comes to the emergency room with chest 
pain, it is vital to make a rapid decision regarding whether the patient should be hos-

TABLE 18.1 Sample Grammar 

P: 
vn = [S,A,B,QD,T\ 

S^NX JVi 
iVi 
N2 

N2 

N3 

-» aN2 

-»WV2 

-+aN3 

->bN3 

-*aT 
-*bT 

vt = (α,6,/·ι,7·2/3,7·4} 

aaaT^n 
bbbT^n 
bbaT-*r3 

baaT^>r3 

abbT->r2 

aabT-+r2 

abaT-*r2 

babT^>r2 
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pitalized, and if so, if he or she should be assigned to a coronary care unit. Relevant in-
formation for this decision comes from a number of sources, including description of 
symptoms, observable symptoms, patient history, ECG results, X-ray results, and blood 
analysis. The objective is to combine these data into one model, which is capable of 
producing a rapid and accurate decision. The variables illustrated here have been se-
lected to illustrate the different data types described previously. 

18.6.2 Knowledge-Based Information 

Typical rules and standard conditions (SCs) are illustrated in Figure 18.6. Note 
that a number of types of information are represented in these rules. Data types in-
clude integer, categorical, continuous, and binary. Variable types may be fuzzy or crisp, 
and temporal data are also included. The information in these rules was derived 
through expert input over a ten-year period. Expert-derived rules are always subject 
to change as medical knowledge improves; thus it is necessary to continually update 
the rule base. 

18.6.3 Data-Based Information 

Some information may not be available through expert consultation. This is par-
ticularly true for new areas in which data are in the collection process or for areas in 
which experts disagree about the relative importance of contributing factors. This data-
based information is included in the system through the use of HyperNet. In the ex-
ample shown here, all analysis of exercise treadmill testing is done using HyperNet. 

18.6.4 Chaotic Data 

Chaotic analysis is useful in many aspects of heart disease. For example, data ob-
tained from twenty-four hour Holter monitoring of patients produces a record of elec-
trocardiogram activity during normal day-to-day activities. Analysis of R-R intervals 
for the Holter data, which is the time between heartbeats, yields interesting patterns. 

Rule 010 

Rule 020 

Rule 030 

IF 

THEN 
IF 
THEN 
IF 

THEN 

sc, 

sc1 0 

sc1 5 

AND 

AND 

(OR) 

(AND) 

Blood Pressure < 100/60 
SCi 
Patient should be admitted to CCU 
SC« 
Patient should be admitted 
scls 
Associated with onset 
Patient should be observed 

(COUNT 2) 

Abnormal mental s tatus 
Cold, clammy skin 
Grey, cyanotic skin 
Weak peripheral pulses 
Urinary output < 30 cc/hr 
Pain excruciating 
Pain unremitting 
Sweating 
Nausea 
Dizziness 

Figure 18.6 Rules and SCs for Chest Pain Analysis. 



286 Chapter 1 8 B HyperMerge, A Hybrid Expert System 

Typically, around 100,000 points are included in the twenty-four hour period. Figure 
18.7 shows a second-order difference graph for the R-R intervals for a normal patient. 
By comparison, Figure 18.8 shows a patient with congestive heart failure (Cohen, Hud-
son, and Deedwania, 1996). The visual difference is quite dramatic. The total number 
of points for each plot is the number of R-R intervals in a twenty-four hour period. For 
the two cases, shown, these are: 

fnormal = 104443 fchf = 109374 

Using Eq. (18.27), the central tendencies for these two plots are computed: 

«normal = 0.986 rtchf = 0.232 

These numerical representations of central tendency can thus be included in the neural 
network model. Note that a rule could also be established in which a subjective mea-
sure of the degree of chaos is used. As it turns out, the CTM measure is quite success-
ful alone in distinguishing between CHF patients and normal individuals. We analyzed 
fifty-four Holter tapes: twenty-six for patients with congestive heart failure (CHF) and 
twenty-eight for normal subjects. Central tendencies were evaluated using r = 0.1 in 
Eq. (18.27). The mean CTMs for CHF (0.69) and normals (0.90) were significantly dif-
ferent (p < 0.01). Only three normal individuals had a CTM less than 0.8, while fifteen 
CHF subjects fell into this category. No normal subjects were found with a CTM less 
than 0.62. Figure 18.9 shows the distribution of CTM values for these two groups (Co-
hen, Hudson, and Deedwania, 1996). Use of this value in conjunction with clinical pa-
rameters in a neural network model provides a useful clinical decision aid for diagno-
sis of CHF. 

Figure 18.7 Second-Order Difference Graph, Normal Patient, 
x = hrt+1 - hr„y = hrt+2 ' hrt+1. 
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Figure 18.8 Second-Order Difference Graph, Patient with Congestive Heart Failure. 
x = hr,+1 - hr„y = hr,+2 - hrt+1. 

Figure 18.9 Classification Using CTM. 
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18.6.5 Sample System 

Figure 18.10 shows a consultation as it appears to the user, invoking both the 
rule-based system and the neural network model where appropriate. The neural net-
work model is embedded in the rule-based model and is triggered by the invocation of 
certain rules. In addition to this direct connection, the neural network model is used to 
obtain weighting factors and thresholds for many of the rules in the knowledge-based 
program. 

The italicized entries in the consultation are not part of the system but are added 
to indicate the origin of the data. Note that the consultation contains a mixture of data 
types. However, the underlying complexity of the system is not apparent to the user. 

As shown, the user can obtain an explanation. In the explanation phase, for the 
rule-based portion, the rules that were substantiated are given. Note that these rules 
use the approximate reasoning format described in Section 18.2. When the neural net-
work model is invoked, the variables used and their relative ranking are provided in-

Patient n : SRM 

Age: 67 
Chief complaint: Recurrent chest pain 
Hx of coronary problems y/n? y 
Hx CAD y/n? y 
Recent ETT data available y/n ?: y 
From ETT (Neural Network) 

Max ST depression in ram: 2.8 
HR at beginning of ETT: 89 
HR at end of ETT: 100 
BP at beginning of ETT: 135 
BP at end of ETT: 133 

HxofCHFy/n? y 
Computer file of bolter data available y/n? y 
Enter file name: SRMhoIter (Chaotic Analysis) 
List current symptom«, followed by a degree of severity between 0 (n) and 10 (y): 

Chest pain 9 (Knowledge-Based System) 
Sweating 7 
Syncope 7 
Cold, Clammy Skin 8 

BP < 100/60? y 
Dizziness? 8 
Nausea? 6 
Associated with onset? y 

Patient sbonM be admitted to hospital as inpattent. 
ETT data indicate 2 vessel CAD 
Hotter data indicates significant chaos in R-R intervals related to CHF 

Do yon want an explanations of these conclusions? y 

The following rules from the knowledge-based chest pain analysis were 

DJ Sweating .25 
.25 
.25 
.25 
(Threshold 0.5) 

Nausea 
Associated with onset 
Patient should be admitted 

IF BP < 100/60 
Abnormal Mental Status 
Cold, Clammy, Skin 
Dry, Cyanotk Skin 
Weak Peripheral Pahes 
Urinary Output < 30cc/br 

THEN Patient should be admitted to CCU (Threshold 0.6) 

D7 Chest pain 
THEN Proceed to other symptom analysis 

The neural network model for ETT concluded 2-vessel disease based on change in HR during test, change In BP during test, 
double produce of HR and BP, and maximum ST depression. 

Chaotk analysis of R-R intervals from the 24-hr Hotter tape indicates a central tendency of 43%, indicating a high level of 

Figure 18.10 Consultation. 
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stead of a rule. For the chaotic analysis, the CTM value for r = 0.1 is given for the 
Holter tape analysis. 

18.7 SUMMARY 

Although many clinically useful systems have been developed, they have been put to 
little practical use for a number of reasons. In order to become useful decision aids, 
these systems must provide relevant advice, be easy to use, and incorporate all avail-
able medical knowledge. The combination of expert input and information derived 
from accumulated data through automated learning algorithms ensures that all avail-
able information can be used in the same system. In the hybrid system presented here, 
the knowledge structure developed by the authors expands the usual production rule 
format to permit more complicated reasoning structures and to allow complete depar-
ture from binary logic leading to reasoning with uncertainty. 

These two approaches not only are adaptable to new medical knowledge, but also 
allow the same system to be utilized for different medical applications by replacement 
of the knowledge and databases. Although in theory this is true, some systems will in-
corporate specific design features that may change with the application. 

EXERCISES 

1. For the sample consultation shown in Figure 18.10, assume that the crisp implementa-
tion was used and that all values > 0.5 are assumed to correspond to yes, and all values 
< 0.5 correspond to no. Using the rules and SCs in Figure 18.6, which rules would be 
substantiated? 

2. Using the weighting factors given in the explanation portion of Figure 18.10 along with 
the values entered for each finding, compute the level of substantiation using Eq. (18.8). 
Do these results correspond to the results from exercise 1? Explain. 

3. Instead of using the neural network model for analysis of ETT data, write a rule or se-
ries of rules. What information do you need in order to write these rules? 

4. For the two rules given in the explanation portion of Figure 18.10, how many input 
nodes would be needed if you wanted to set up a neural network model to analyze this 
information? 

5. For the plots in Figures 18.7 and 18.8 that show degrees of chaos, which plot has a 
higher degree of chaos? What would you expect a plot to look like for a time series with 
no chaos present? with a maximum amount of chaos? 

6. It has been found that including more information to describe the distribution of points 
in the second-order difference plot results in better classification results. The following 
were used: 

CTM with r = 0.05 
CTM with r = 0.10 
Value of r for which CTM includes 99 percent of points 
Total number of R-R intervals. 

(a) Illustrate a neural network design that could be used to develop a classifier using 
this information. 

(b) Devise a set of rules that would accomplish the same purpose. 
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Future Perspectives 

19.1 INTRODUCTION 

Predicting the future is always dangerous. One is reminded of some famous predictions 
of the last fifty years relating to computer technology. In the early 1950s an IBM exec-
utive was asked how many of the new computers would be needed for the United 
States. His prediction was that five would suffice! On the software side, a famous con-
ference was held in 1956 of leaders in the then fledging field of artificial intelligence. 
They predicted that most of the important problems of AI would be solved within 
twenty years. At a twenty-five year reunion of the group at the 1981 Vancouver, 
Canada, meeting of the American Association for Artificial Intelligence (AAAI, 1981), 
they admitted that the problems had been slightly underestimated. Nonetheless, with 
these examples in mind, we will attempt to project some future prospects of comput-
erized decision-support aids. 

19.2 EFFECTS OF HARDWARE ADVANCES 

As anyone with a passing acquaintance with computers can confirm, the changes in 
computer hardware in terms of both memory capacity and speed have been phenom-
enal in the last few years. With the recent introduction of new chip technologies, it ap-
pears that the rate of increase in speed is likely to continue to escalate. Although these 
changes prompt users to buy new computers, do they have any effect on basic software 
technology? 

19.2.1 Faster Computing Speeds 

Faster computational speeds not only allow us to retrieve information and do cal-
culations more rapidly, but they open up new possibilities for software. As an example, 
consider the Windows 95 package running on a 486-based computer versus a Pentium-
based processor. On the former, the speed is slow enough to discourage use of the pack-
age. Thus faster speeds do lead to the development of more complex software packages. 
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How does this affect the methods we have discussed here? In the 1960s and 
1970s, many pattern recognition algorithms were considered infeasible because of the 
lengthy training time, which could run into days. With current computers, training al-
gorithms can be run on large data sets that were completely out of the question with 
slower computers. The faster speeds are also important in applications that require 
real-time answers, such as intensive care unit (ICU) monitoring systems: the faster the 
computer, the more complex the computation that can be done in real time. Many 
other applications that require rapid decision-making algorithms include emergency 
situations, either in the ER or by paramedics in the field. Some of the early systems, 
such as MYCIN, could take as long as twenty minutes to arrive at a decision. Fast com-
puters can allow complex decision algorithms to produce results that are rapid enough 
to use in these situations. 

19.2.2 Increased Memory 

Increased memory provides important advantages for many pattern classification 
and AI systems. Many early algorithms were abandoned because they required that all 
data be stored in the computer simultaneously. This is no longer an important consid-
eration except for image databases. Increased memory in the future will permit more 
automated decision making with nontextual data such as images and time series, which 
may still consume several megabytes per item. Memory size is no longer a problem for 
storage of algorithms, as it was in the 1960s and early 1970s when problems had to be 
paged in and out of memory. 

19.2.3 Parallel Machines 

Although parallel machines exist today, they are rare, and even for those that do 
exist, the software rarely takes full advantage of the parallel processing capabilities. 
One motivating factor for neural network approaches is that they were based on the 
parallel structure of the biological nervous system. Even so, because of the widespread 
use of the sequential computer, virtually all of these algorithms were implemented in 
a sequential fashion. Once parallel processors are widely available, the software will 
have to be rewritten to take advantage of parallel computation. The drive to do this has 
been diminished by the faster speed of sequential computers. Again, an area that can 
benefit greatly from parallel computation is image processing. For knowledge-based 
systems, much more complex rule structures could conceivably be searched in a simul-
taneous fashion, although in many cases this would completely alter the rule searching 
strategy. 

19.2.4 Miniaturization 

In the process of becoming faster, computer chips have also become smaller. This 
is very important in the field of implantable medical devices and in orthoscopic surgi-
cal instruments. The smaller chips that can hold more instructions open up new possi-
bilities in the design of intelligent biomedical products. 

19.2.5 Organic Semiconductors 

One intriguing new area of research is the study of organic semiconductors. If a 
successful commercial organic semiconductor were developed, what effect would this 
have? There are probably many unforeseen possibilities, but one immediate advantage 
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may be their increased biocompatibility that will aid in the development of im-
plantable medical devices, as will the miniaturization process. 

19.3 EFFECTS OF INCREASE IN KNOWLEDGE 

The hardware is the tool that we use to implement decision-support strategies. The un-
derlying software is limited only by the imagination of the developer. 

19.3.1 Information Explosion 

We are currently in the midst of an information revolution, in terms not only of 
volume but also of delivery of information. Worldwide communications have been fa-
cilitated through the use of electronic mail, and an increasing proportion of the popu-
lation gets information directly from the Internet. The current drawback of the Inter-
net, which appears to be inherent in its nature, is the lack of organization. There is, 
however, unlimited potential for the development of decision-support systems that can 
seek out and use relevant information. In the decade to come, Internet information will 
pose a number of challenges, including: 

1. How can relevant information be located? 
2. How can the reliability and accuracy of the information be ascertained? 
3. How can the information be updated? 
4. How can Internet information be incorporated directly into decision-support 

aids? 

Of all these questions, the second is the most crucial. 

19.3.2 Human Genome Project 

The human genome project has been ongoing for some years now and has shown 
some remarkable progress. The rate at which genes are being located for specific dis-
orders has increased dramatically. Is any of this information relevant to biomedical 
decision-support systems? There are some obvious connections: 

1. Genetic diagnosis. 
2. Genetic algorithms. 
3. New information techniques for gene identification. 

This project has also brought into focus research on new information technology deal-
ing with gene sequencing. Although this research is currently focused on the human 
genome project, it has future potential for applications in many areas since it addresses 
problems of searching, matching, and storing large volumes of information. The impact 
of the human genome project will probably not be fully realized for a number of years. 

19.3.3 Proliferation of Databases 

In addition to the human genome database, numerous biomedical databases ex-
ist. These include site-specific databases at hospitals, clinics, and research facilities that 
are generally not shared with other researchers; collaborative databases established 
through cooperative efforts; federal and state government databases such as the Na-
tional Institutes of Health collection of databases and state-based tumor registry data; 
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as well as a growing number of Internet databases, including chemical abstracts, con-
ference papers, dissertation abstracts, federal research in progress, pharmaceutical ab-
stracts, science citation index, and social science citation index (Galvin et al., 1995).The 
National Library of Medicine maintains a number of bibliographic databases, includ-
ing AVLINE, BIOETHICSLINE, CANCERLIT, CATLINE, HEALTH, HISTLINE, 
HSTAR, POPLINE, and TOXLINE as well as factual databases, including CHEMID, 
DENTALPROJ, PDQ, and TOXNET. Another active area of database creation is ra-
diology. These databases in general contain archived images representing the healthy 
and diseased conditions of various body systems. For example, a system called CHO-
RUS (Collaborative Hypertext of Radiology) was developed to facilitate collaboration 
among physicians (Kahn, 1995). It consists of a computer-based radiology handbook 
that was developed and published electronically via the World Wide Web on the In-
ternet. This system allows physicians without computer expertise to read documents, 
contribute knowledge, and critically review the handbook's content by using a simple, 
graphical user interface from virtually any type of computer system. These databases 
offer potential for large-scale epidemiological studies if the issues discussed in Chap-
ters 8 and 13 can be adequately addressed. 

A topic of growing interest is evidence-based medicine (Gray, 1997). The basic 
premise is that medical decisions should be based on well-founded research. There are 
major obstacles to using the medical literature in this manner. An overview of the sub-
ject is given by Sackett et al. (1997) and emphasizes formulating clinical questions that 
can be answered, searching for, critically appraising, and evaluating evidence. This ap-
proach to medical decision making attempts to utilize the growing body of information 
in a rational framework. It can also offer a framework for developing computer-
assisted medical decision-making systems. The coming of age of the digital library 
should facilitate evidenced-based approaches (Lucier, 1995). 

19.3.4 Communication of Information 

In addition to online databases and digital libraries, advanced communications 
will allow the immediate transfer of information that can be put to good use in bio-
medical applications. Clinical applications are already in place for such fields as tele-
radiology and telepathology. Direct telemedicine applications, in which a physician lo-
cated elsewhere conducts physical examinations, will no doubt increase in number and 
sophistication (Hudson et al., 1998). These technologies can be particularly useful for 
patients in rural areas. Remote monitoring of online systems may also become feasible 
with high-speed reliable networks. 

19.4 THE FUTURE OF SOFTWARE 

19.4.1 Hybrid Systems 

As discussed in Chapters 17 and 18, hybrid systems that encompass a combina-
tion of techniques appear to hold promise in addressing complex problems encoun-
tered in the biomedical field. If these systems are designed in a modular fashion, they 
will also be able to add new approaches as they become available. 

19.4.2 Parallel Systems 

The development of software that is written specifically to take advantage of par-
allel processing will allow problems with large numbers of variables to be solved in real 
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time. This is particularly important in patient care situations such as the emergency 
room and the ICU. 

19.4.3 Nontextual Data 

Problems associated with image information remain largely unsolved. The use of 
parallel processing greatly enhances image manipulation capabilities, but new software 
techniques are still needed for pattern recognition and automated image analysis. 
Methods for analysis of biomedical time series data are also needed which permit the 
extraction of patterns from large data sets and nonstationary patterns such as EEGs. 

19.4.4 Neural Network Models 

Most neural network models are based loosely on the structure of biological ner-
vous systems. There is a growing body of information about nervous systems and brain 
function that is not incorporated into the computer models. New paradigms may be de-
veloped which more closely resemble the human information processing system. 

19.4.5 Artificial Intelligence Approaches 

As many of the advances coming from artificial intelligence approaches become 
commonplace, their origins are lost. For example, the time-sharing computer origi-
nated from research in artificial intelligence. Neural networks also had their founda-
tions in artificial intelligence but are now generally considered as a separate topic. Cer-
tainly, the field of artificial intelligence provides unlimited opportunities for growth 
because it is broad enough to encompass any computer approach that appears to 
demonstrate intelligence. The future of artificial intelligence in the field of medical de-
cision making is difficult to predict but will probably rely on more sophisticated rea-
soning paradigms than current systems use and may benefit from the evidenced-based 
approach to medical decision making. 
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maximum value, 53,55 

Distribution 
Boltzmann, 39,40,220 

normal, 231 
multivariate, 231 
univariate, 232 

possibility, 252,253 
probability, 226,231 

DNA, 15 
Drug dosage 

computer-aided, 135,156 
Dynamics 

neuro-, 30 
nonlinear, 13,14 

Dxplain, 132,142 

E 

Echocardiography, 101 
Edge, 185-188 
Eigenvalue, 61 
Electrocardiogram (ECG), 2,6,7,19,47, 

100,136,267 
Electroencephalogram (EEG), 2,6,7,48,136 
Electrolytes, 98 
Embedding, 248 
EMERGE, 139,155-157,159,168,173, 
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fuzzy, 248 
Metrics. See distance 
Mitochondria, 15 
Models 1 

Analogue, 248 
association, 32,34,37 

auto-, 32,33,37 
hetero-, 32 
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