

University of Zagreb Faculty of Electrical Engineering and Computing

Biomedical Instrumentation -Clinical Laboratory Instrumentation

prof.dr.sc. Ratko Magjarević

- Analysis of patien specimens
- Provide information to
 - Aid diagnosis
 - Evaluate therapy
- Sections:
 - Chemical lab
 - Hematology
 - Microbiology
 - Blood bank

- Chemical laboratory
 - Chemical analysis of body fluids:
 - Blood
 - Urine
 - Cerebrospinal fluid (CSF)
 - Other fluids
 - Microbiology
 - Blood bank

- Hematology
 - Determination of
 - Number
 - Characteristics of formed parts of the blood like
 - Red blood cells
 - White blood cells
 - Platelets
 - Test of function of physiological systems in the blood
 - Clotting studies

- Microbiology laboratory
 - Study of body tissue and fluids
 - Search for pathological microorganisms
 - Susceptobility tests
 - Sensitivity of microorganisms to antibiotics
 - Characteristics of formed parts of the blood like
- Blood bank
 - Classification of blood product
 - ABO grouping

Owerview of instrumentation

- Spectrophotometry
- Automated Chemical Analysers
- Chromatography
- Electrophoresis
- Hematology

Spectrophotometry

Characteristics of <u>spectrophotometers</u>:

- Accuracy
- Precision
- Sutability for automatic instrumentation

Theory of operation

- Substances of clinical interest selectively absorc or emit electromagnetic energy at different wavelengths
 - Ultraviolet light (200 to 400 nm)
 - Visible light (400 to 700 nm)
 - Near infrared (700 to 800 nm)

Spectrophotometer block diagram

- Light source supplies radiant energy
- Wavelength selector filters selected wavelengths
- Cuvette holds the sample in the path of radiant eneggy
- Detector produces electrical signal proportional to the energy received and readout displays the received energy as a function of eg. concentration of the substance

Light (power) sources

Hydrogen or deuterium discharge lamps (UV)

Tungsten filament lamps (visible)

- Continous spectrum
- Much of the specrum emitted in the IR
- Regulated power supply emitted output energy varies with 4th power of filament voltage!

$$E \approx u_F^4$$

Considerations how to design constant power spectrum for measurements

Filters

- Glass filters
 - Absorb power
 - High pass and low pass filters
 - Combination of two- band pass filter
 - Note that transparence T is decreasing with reducing the bandwith

Filters

- Interference filters
 - Principle of operation:
 - Spacing reflecting surfaces (mirrors) at a short distance
 - Light is reflecting back and forth
 - Distance selected in such a way that
 - » the wavelength of interest is in phase and reinforced (selected)
 - » Light out of interest is out of phase and canceled
 - Higher harmoncs have to be removed by optical filters

Monocromators

devices utilizing

- Prisms
- Diffraction gratings
- Provide narrow wavelengths
- Adjustable nominal wavelengths
- Principle of operation:
 - Disperse inpul light spatially as a function of wavelength
 - Only the band of interest is allowed to pass a slit

Holder of the analysed substance Optical characteristics do not influence measurement

Sample

Sample absorbs light selectively Described by Beer's Law

$$P = P_0 10^{-aLC}$$

 P_0 – radiant power arriving at the cuvette

- P radiant power leaving the cuvette
- a absorptivity of the sample
- L length of the light path through the sample
- C concentration of the absorbing substance

Sample

Results:

Transmittance % $T = 100 P / P_0 = (100) 10^{-aLC}$

Absorbance

A = aLC

- Plotted against wavelength

Hematology Lab

Determination of

- Number of elements in microliter (µl)
- Characteristics of formed parts of the blood like
 - Red blood cells male: 4.6 to 6.2 x 10^6 / μl

- female: 4.2 to 5.4 x 10 $^{\rm 6}$ / μl

- White blood cells: 4.500 to 11.000 / μl
- Platelets

Hematology Lab

– Counter of blood cells:

- 2 Electrodes current measurement
- Pump for liquid flow (including blood cells)
- Passing of the blood cell through the gap causes change of impedance – measured as chane in current

Block diagram for blood characteristics measurement

Block diagram of UV spectral analyser

Block diagram of IR apsorption analyser

• With termocouples

Block diagram of IR apsorption analyser

• With capacitive detector

Block diagram of UV/visible light spectrophotometer

Blockdiagram of IR spectrophotometer

Literature

- Webster, J., "Medical Instrumentation"
- Brown, BH., Smallwood, RH., et al., "Medical Physics and Biomedical Engineering, IoP Press, Bristol, 1999